This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nmlno0i . (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmlno0.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| nmlno0.0 | ⊢ 𝑍 = ( 𝑈 0op 𝑊 ) | ||
| nmlno0.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| nmlno0lem.u | ⊢ 𝑈 ∈ NrmCVec | ||
| nmlno0lem.w | ⊢ 𝑊 ∈ NrmCVec | ||
| nmlno0lem.l | ⊢ 𝑇 ∈ 𝐿 | ||
| nmlno0lem.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | ||
| nmlno0lem.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmlno0lem.r | ⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nmlno0lem.s | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑊 ) | ||
| nmlno0lem.p | ⊢ 𝑃 = ( 0vec ‘ 𝑈 ) | ||
| nmlno0lem.q | ⊢ 𝑄 = ( 0vec ‘ 𝑊 ) | ||
| nmlno0lem.k | ⊢ 𝐾 = ( normCV ‘ 𝑈 ) | ||
| nmlno0lem.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| Assertion | nmlno0lem | ⊢ ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ 𝑇 = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlno0.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 2 | nmlno0.0 | ⊢ 𝑍 = ( 𝑈 0op 𝑊 ) | |
| 3 | nmlno0.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 4 | nmlno0lem.u | ⊢ 𝑈 ∈ NrmCVec | |
| 5 | nmlno0lem.w | ⊢ 𝑊 ∈ NrmCVec | |
| 6 | nmlno0lem.l | ⊢ 𝑇 ∈ 𝐿 | |
| 7 | nmlno0lem.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 8 | nmlno0lem.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 9 | nmlno0lem.r | ⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 10 | nmlno0lem.s | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑊 ) | |
| 11 | nmlno0lem.p | ⊢ 𝑃 = ( 0vec ‘ 𝑈 ) | |
| 12 | nmlno0lem.q | ⊢ 𝑄 = ( 0vec ‘ 𝑊 ) | |
| 13 | nmlno0lem.k | ⊢ 𝐾 = ( normCV ‘ 𝑈 ) | |
| 14 | nmlno0lem.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 15 | 7 13 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( 𝐾 ‘ 𝑥 ) ∈ ℝ ) |
| 16 | 4 15 | mpan | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝐾 ‘ 𝑥 ) ∈ ℝ ) |
| 17 | 16 | recnd | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝐾 ‘ 𝑥 ) ∈ ℂ ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝐾 ‘ 𝑥 ) ∈ ℂ ) |
| 19 | 7 11 13 | nvz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐾 ‘ 𝑥 ) = 0 ↔ 𝑥 = 𝑃 ) ) |
| 20 | 4 19 | mpan | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐾 ‘ 𝑥 ) = 0 ↔ 𝑥 = 𝑃 ) ) |
| 21 | fveq2 | ⊢ ( 𝑥 = 𝑃 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑃 ) ) | |
| 22 | 7 8 11 12 3 | lno0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ‘ 𝑃 ) = 𝑄 ) |
| 23 | 4 5 6 22 | mp3an | ⊢ ( 𝑇 ‘ 𝑃 ) = 𝑄 |
| 24 | 21 23 | eqtrdi | ⊢ ( 𝑥 = 𝑃 → ( 𝑇 ‘ 𝑥 ) = 𝑄 ) |
| 25 | 20 24 | biimtrdi | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐾 ‘ 𝑥 ) = 0 → ( 𝑇 ‘ 𝑥 ) = 𝑄 ) ) |
| 26 | 25 | necon3d | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 → ( 𝐾 ‘ 𝑥 ) ≠ 0 ) ) |
| 27 | 26 | imp | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝐾 ‘ 𝑥 ) ≠ 0 ) |
| 28 | 18 27 | recne0d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 1 / ( 𝐾 ‘ 𝑥 ) ) ≠ 0 ) |
| 29 | simpr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) | |
| 30 | 18 27 | reccld | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ) |
| 31 | 7 8 3 | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |
| 32 | 4 5 6 31 | mp3an | ⊢ 𝑇 : 𝑋 ⟶ 𝑌 |
| 33 | 32 | ffvelcdmi | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) |
| 34 | 33 | adantr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) |
| 35 | 8 10 12 | nvmul0or | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) = 𝑄 ↔ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 𝑄 ) ) ) |
| 36 | 5 35 | mp3an1 | ⊢ ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) = 𝑄 ↔ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 𝑄 ) ) ) |
| 37 | 30 34 36 | syl2anc | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) = 𝑄 ↔ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 𝑄 ) ) ) |
| 38 | 37 | necon3abid | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ≠ 𝑄 ↔ ¬ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 𝑄 ) ) ) |
| 39 | neanior | ⊢ ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ≠ 0 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) ↔ ¬ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) = 0 ∨ ( 𝑇 ‘ 𝑥 ) = 𝑄 ) ) | |
| 40 | 38 39 | bitr4di | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ≠ 𝑄 ↔ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ≠ 0 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) ) ) |
| 41 | 28 29 40 | mpbir2and | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ≠ 𝑄 ) |
| 42 | 8 10 | nvscl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ∈ 𝑌 ) |
| 43 | 5 42 | mp3an1 | ⊢ ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑌 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ∈ 𝑌 ) |
| 44 | 30 34 43 | syl2anc | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ∈ 𝑌 ) |
| 45 | 8 12 14 | nvgt0 | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ∈ 𝑌 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ≠ 𝑄 ↔ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 46 | 5 44 45 | sylancr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ≠ 𝑄 ↔ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 47 | 41 46 | mpbid | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 48 | 47 | ex | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 → 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 49 | 48 | adantl | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 → 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 50 | 8 14 | nmosetre | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ ) |
| 51 | 5 32 50 | mp2an | ⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ |
| 52 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 53 | 51 52 | sstri | ⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* |
| 54 | simpl | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → 𝑥 ∈ 𝑋 ) | |
| 55 | 7 9 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ∈ 𝑋 ) |
| 56 | 4 55 | mp3an1 | ⊢ ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ∈ 𝑋 ) |
| 57 | 30 54 56 | syl2anc | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ∈ 𝑋 ) |
| 58 | 24 | necon3i | ⊢ ( ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 → 𝑥 ≠ 𝑃 ) |
| 59 | 7 9 11 13 | nv1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑥 ≠ 𝑃 ) → ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = 1 ) |
| 60 | 4 59 | mp3an1 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ≠ 𝑃 ) → ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = 1 ) |
| 61 | 58 60 | sylan2 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = 1 ) |
| 62 | 1re | ⊢ 1 ∈ ℝ | |
| 63 | 61 62 | eqeltrdi | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ∈ ℝ ) |
| 64 | eqle | ⊢ ( ( ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ∈ ℝ ∧ ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = 1 ) → ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ≤ 1 ) | |
| 65 | 63 61 64 | syl2anc | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ≤ 1 ) |
| 66 | 4 5 6 | 3pm3.2i | ⊢ ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) |
| 67 | 7 9 10 3 | lnomul | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) |
| 68 | 66 67 | mpan | ⊢ ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) |
| 69 | 30 54 68 | syl2anc | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) |
| 70 | 69 | eqcomd | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) = ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) |
| 71 | 70 | fveq2d | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) ) |
| 72 | fveq2 | ⊢ ( 𝑧 = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) → ( 𝐾 ‘ 𝑧 ) = ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) | |
| 73 | 72 | breq1d | ⊢ ( 𝑧 = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) → ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ↔ ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ≤ 1 ) ) |
| 74 | 2fveq3 | ⊢ ( 𝑧 = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) ) | |
| 75 | 74 | eqeq2d | ⊢ ( 𝑧 = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) → ( ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) ) ) |
| 76 | 73 75 | anbi12d | ⊢ ( 𝑧 = ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) → ( ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) ) ) ) |
| 77 | 76 | rspcev | ⊢ ( ( ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ∈ 𝑋 ∧ ( ( 𝐾 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑅 𝑥 ) ) ) ) ) → ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 78 | 57 65 71 77 | syl12anc | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 79 | fvex | ⊢ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ V | |
| 80 | eqeq1 | ⊢ ( 𝑦 = ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) | |
| 81 | 80 | anbi2d | ⊢ ( 𝑦 = ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) → ( ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
| 82 | 81 | rexbidv | ⊢ ( 𝑦 = ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) → ( ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ↔ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
| 83 | 79 82 | elab | ⊢ ( ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ↔ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 84 | 78 83 | sylibr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ) |
| 85 | supxrub | ⊢ ( ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* ∧ ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) | |
| 86 | 53 84 85 | sylancr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 87 | 86 | adantll | ⊢ ( ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 88 | 7 8 13 14 1 | nmooval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 89 | 4 5 32 88 | mp3an | ⊢ ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) |
| 90 | 89 | eqeq1i | ⊢ ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) = 0 ) |
| 91 | 90 | biimpi | ⊢ ( ( 𝑁 ‘ 𝑇 ) = 0 → sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) = 0 ) |
| 92 | 91 | ad2antrr | ⊢ ( ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → sup ( { 𝑦 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐾 ‘ 𝑧 ) ≤ 1 ∧ 𝑦 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) = 0 ) |
| 93 | 87 92 | breqtrd | ⊢ ( ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ) |
| 94 | 8 14 | nvcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ∈ 𝑌 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 95 | 5 44 94 | sylancr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 96 | 0re | ⊢ 0 ∈ ℝ | |
| 97 | lenlt | ⊢ ( ( ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ↔ ¬ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) | |
| 98 | 95 96 97 | sylancl | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ↔ ¬ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 99 | 98 | adantll | ⊢ ( ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ( ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ≤ 0 ↔ ¬ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 100 | 93 99 | mpbid | ⊢ ( ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) → ¬ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 101 | 100 | ex | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 → ¬ 0 < ( 𝑀 ‘ ( ( 1 / ( 𝐾 ‘ 𝑥 ) ) 𝑆 ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 102 | 49 101 | pm2.65d | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) → ¬ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ) |
| 103 | nne | ⊢ ( ¬ ( 𝑇 ‘ 𝑥 ) ≠ 𝑄 ↔ ( 𝑇 ‘ 𝑥 ) = 𝑄 ) | |
| 104 | 102 103 | sylib | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑥 ) = 𝑄 ) |
| 105 | 7 12 2 | 0oval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ) → ( 𝑍 ‘ 𝑥 ) = 𝑄 ) |
| 106 | 4 5 105 | mp3an12 | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝑍 ‘ 𝑥 ) = 𝑄 ) |
| 107 | 106 | adantl | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑍 ‘ 𝑥 ) = 𝑄 ) |
| 108 | 104 107 | eqtr4d | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑥 ) ) |
| 109 | 108 | ralrimiva | ⊢ ( ( 𝑁 ‘ 𝑇 ) = 0 → ∀ 𝑥 ∈ 𝑋 ( 𝑇 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑥 ) ) |
| 110 | ffn | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → 𝑇 Fn 𝑋 ) | |
| 111 | 32 110 | ax-mp | ⊢ 𝑇 Fn 𝑋 |
| 112 | 7 8 2 | 0oo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑍 : 𝑋 ⟶ 𝑌 ) |
| 113 | 4 5 112 | mp2an | ⊢ 𝑍 : 𝑋 ⟶ 𝑌 |
| 114 | ffn | ⊢ ( 𝑍 : 𝑋 ⟶ 𝑌 → 𝑍 Fn 𝑋 ) | |
| 115 | 113 114 | ax-mp | ⊢ 𝑍 Fn 𝑋 |
| 116 | eqfnfv | ⊢ ( ( 𝑇 Fn 𝑋 ∧ 𝑍 Fn 𝑋 ) → ( 𝑇 = 𝑍 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑇 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑥 ) ) ) | |
| 117 | 111 115 116 | mp2an | ⊢ ( 𝑇 = 𝑍 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑇 ‘ 𝑥 ) = ( 𝑍 ‘ 𝑥 ) ) |
| 118 | 109 117 | sylibr | ⊢ ( ( 𝑁 ‘ 𝑇 ) = 0 → 𝑇 = 𝑍 ) |
| 119 | fveq2 | ⊢ ( 𝑇 = 𝑍 → ( 𝑁 ‘ 𝑇 ) = ( 𝑁 ‘ 𝑍 ) ) | |
| 120 | 1 2 | nmoo0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑁 ‘ 𝑍 ) = 0 ) |
| 121 | 4 5 120 | mp2an | ⊢ ( 𝑁 ‘ 𝑍 ) = 0 |
| 122 | 119 121 | eqtrdi | ⊢ ( 𝑇 = 𝑍 → ( 𝑁 ‘ 𝑇 ) = 0 ) |
| 123 | 118 122 | impbii | ⊢ ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ 𝑇 = 𝑍 ) |