This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the zero operator. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0oval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 0oval.6 | ⊢ 𝑍 = ( 0vec ‘ 𝑊 ) | ||
| 0oval.0 | ⊢ 𝑂 = ( 𝑈 0op 𝑊 ) | ||
| Assertion | 0oval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0oval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | 0oval.6 | ⊢ 𝑍 = ( 0vec ‘ 𝑊 ) | |
| 3 | 0oval.0 | ⊢ 𝑂 = ( 𝑈 0op 𝑊 ) | |
| 4 | 1 2 3 | 0ofval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑂 = ( 𝑋 × { 𝑍 } ) ) |
| 5 | 4 | fveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑋 × { 𝑍 } ) ‘ 𝐴 ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑋 × { 𝑍 } ) ‘ 𝐴 ) ) |
| 7 | 2 | fvexi | ⊢ 𝑍 ∈ V |
| 8 | 7 | fvconst2 | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑋 × { 𝑍 } ) ‘ 𝐴 ) = 𝑍 ) |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑋 × { 𝑍 } ) ‘ 𝐴 ) = 𝑍 ) |
| 10 | 6 9 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = 𝑍 ) |