This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm function. (Contributed by NM, 27-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoofval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoofval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoofval.3 | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | ||
| nmoofval.4 | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| nmoofval.6 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| Assertion | nmooval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoofval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoofval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoofval.3 | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | |
| 4 | nmoofval.4 | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 5 | nmoofval.6 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 6 | 2 | fvexi | ⊢ 𝑌 ∈ V |
| 7 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 8 | 6 7 | elmap | ⊢ ( 𝑇 ∈ ( 𝑌 ↑m 𝑋 ) ↔ 𝑇 : 𝑋 ⟶ 𝑌 ) |
| 9 | 1 2 3 4 5 | nmoofval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑁 = ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |
| 10 | 9 | fveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑁 ‘ 𝑇 ) = ( ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ‘ 𝑇 ) ) |
| 11 | fveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑧 ) ) | |
| 12 | 11 | fveq2d | ⊢ ( 𝑡 = 𝑇 → ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) |
| 13 | 12 | eqeq2d | ⊢ ( 𝑡 = 𝑇 → ( 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ↔ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 14 | 13 | anbi2d | ⊢ ( 𝑡 = 𝑇 → ( ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ↔ ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
| 15 | 14 | rexbidv | ⊢ ( 𝑡 = 𝑇 → ( ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ↔ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
| 16 | 15 | abbidv | ⊢ ( 𝑡 = 𝑇 → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } = { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ) |
| 17 | 16 | supeq1d | ⊢ ( 𝑡 = 𝑇 → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 18 | eqid | ⊢ ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) = ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) | |
| 19 | xrltso | ⊢ < Or ℝ* | |
| 20 | 19 | supex | ⊢ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ∈ V |
| 21 | 17 18 20 | fvmpt | ⊢ ( 𝑇 ∈ ( 𝑌 ↑m 𝑋 ) → ( ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 22 | 10 21 | sylan9eq | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑇 ∈ ( 𝑌 ↑m 𝑋 ) ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 23 | 8 22 | sylan2br | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 24 | 23 | 3impa | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |