This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nmlno0i . (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmlno0.3 | |- N = ( U normOpOLD W ) |
|
| nmlno0.0 | |- Z = ( U 0op W ) |
||
| nmlno0.7 | |- L = ( U LnOp W ) |
||
| nmlno0lem.u | |- U e. NrmCVec |
||
| nmlno0lem.w | |- W e. NrmCVec |
||
| nmlno0lem.l | |- T e. L |
||
| nmlno0lem.1 | |- X = ( BaseSet ` U ) |
||
| nmlno0lem.2 | |- Y = ( BaseSet ` W ) |
||
| nmlno0lem.r | |- R = ( .sOLD ` U ) |
||
| nmlno0lem.s | |- S = ( .sOLD ` W ) |
||
| nmlno0lem.p | |- P = ( 0vec ` U ) |
||
| nmlno0lem.q | |- Q = ( 0vec ` W ) |
||
| nmlno0lem.k | |- K = ( normCV ` U ) |
||
| nmlno0lem.m | |- M = ( normCV ` W ) |
||
| Assertion | nmlno0lem | |- ( ( N ` T ) = 0 <-> T = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlno0.3 | |- N = ( U normOpOLD W ) |
|
| 2 | nmlno0.0 | |- Z = ( U 0op W ) |
|
| 3 | nmlno0.7 | |- L = ( U LnOp W ) |
|
| 4 | nmlno0lem.u | |- U e. NrmCVec |
|
| 5 | nmlno0lem.w | |- W e. NrmCVec |
|
| 6 | nmlno0lem.l | |- T e. L |
|
| 7 | nmlno0lem.1 | |- X = ( BaseSet ` U ) |
|
| 8 | nmlno0lem.2 | |- Y = ( BaseSet ` W ) |
|
| 9 | nmlno0lem.r | |- R = ( .sOLD ` U ) |
|
| 10 | nmlno0lem.s | |- S = ( .sOLD ` W ) |
|
| 11 | nmlno0lem.p | |- P = ( 0vec ` U ) |
|
| 12 | nmlno0lem.q | |- Q = ( 0vec ` W ) |
|
| 13 | nmlno0lem.k | |- K = ( normCV ` U ) |
|
| 14 | nmlno0lem.m | |- M = ( normCV ` W ) |
|
| 15 | 7 13 | nvcl | |- ( ( U e. NrmCVec /\ x e. X ) -> ( K ` x ) e. RR ) |
| 16 | 4 15 | mpan | |- ( x e. X -> ( K ` x ) e. RR ) |
| 17 | 16 | recnd | |- ( x e. X -> ( K ` x ) e. CC ) |
| 18 | 17 | adantr | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( K ` x ) e. CC ) |
| 19 | 7 11 13 | nvz | |- ( ( U e. NrmCVec /\ x e. X ) -> ( ( K ` x ) = 0 <-> x = P ) ) |
| 20 | 4 19 | mpan | |- ( x e. X -> ( ( K ` x ) = 0 <-> x = P ) ) |
| 21 | fveq2 | |- ( x = P -> ( T ` x ) = ( T ` P ) ) |
|
| 22 | 7 8 11 12 3 | lno0 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` P ) = Q ) |
| 23 | 4 5 6 22 | mp3an | |- ( T ` P ) = Q |
| 24 | 21 23 | eqtrdi | |- ( x = P -> ( T ` x ) = Q ) |
| 25 | 20 24 | biimtrdi | |- ( x e. X -> ( ( K ` x ) = 0 -> ( T ` x ) = Q ) ) |
| 26 | 25 | necon3d | |- ( x e. X -> ( ( T ` x ) =/= Q -> ( K ` x ) =/= 0 ) ) |
| 27 | 26 | imp | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( K ` x ) =/= 0 ) |
| 28 | 18 27 | recne0d | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( 1 / ( K ` x ) ) =/= 0 ) |
| 29 | simpr | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( T ` x ) =/= Q ) |
|
| 30 | 18 27 | reccld | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( 1 / ( K ` x ) ) e. CC ) |
| 31 | 7 8 3 | lnof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : X --> Y ) |
| 32 | 4 5 6 31 | mp3an | |- T : X --> Y |
| 33 | 32 | ffvelcdmi | |- ( x e. X -> ( T ` x ) e. Y ) |
| 34 | 33 | adantr | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( T ` x ) e. Y ) |
| 35 | 8 10 12 | nvmul0or | |- ( ( W e. NrmCVec /\ ( 1 / ( K ` x ) ) e. CC /\ ( T ` x ) e. Y ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) = Q <-> ( ( 1 / ( K ` x ) ) = 0 \/ ( T ` x ) = Q ) ) ) |
| 36 | 5 35 | mp3an1 | |- ( ( ( 1 / ( K ` x ) ) e. CC /\ ( T ` x ) e. Y ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) = Q <-> ( ( 1 / ( K ` x ) ) = 0 \/ ( T ` x ) = Q ) ) ) |
| 37 | 30 34 36 | syl2anc | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) = Q <-> ( ( 1 / ( K ` x ) ) = 0 \/ ( T ` x ) = Q ) ) ) |
| 38 | 37 | necon3abid | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) =/= Q <-> -. ( ( 1 / ( K ` x ) ) = 0 \/ ( T ` x ) = Q ) ) ) |
| 39 | neanior | |- ( ( ( 1 / ( K ` x ) ) =/= 0 /\ ( T ` x ) =/= Q ) <-> -. ( ( 1 / ( K ` x ) ) = 0 \/ ( T ` x ) = Q ) ) |
|
| 40 | 38 39 | bitr4di | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) =/= Q <-> ( ( 1 / ( K ` x ) ) =/= 0 /\ ( T ` x ) =/= Q ) ) ) |
| 41 | 28 29 40 | mpbir2and | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( 1 / ( K ` x ) ) S ( T ` x ) ) =/= Q ) |
| 42 | 8 10 | nvscl | |- ( ( W e. NrmCVec /\ ( 1 / ( K ` x ) ) e. CC /\ ( T ` x ) e. Y ) -> ( ( 1 / ( K ` x ) ) S ( T ` x ) ) e. Y ) |
| 43 | 5 42 | mp3an1 | |- ( ( ( 1 / ( K ` x ) ) e. CC /\ ( T ` x ) e. Y ) -> ( ( 1 / ( K ` x ) ) S ( T ` x ) ) e. Y ) |
| 44 | 30 34 43 | syl2anc | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( 1 / ( K ` x ) ) S ( T ` x ) ) e. Y ) |
| 45 | 8 12 14 | nvgt0 | |- ( ( W e. NrmCVec /\ ( ( 1 / ( K ` x ) ) S ( T ` x ) ) e. Y ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) =/= Q <-> 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 46 | 5 44 45 | sylancr | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( ( 1 / ( K ` x ) ) S ( T ` x ) ) =/= Q <-> 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 47 | 41 46 | mpbid | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) |
| 48 | 47 | ex | |- ( x e. X -> ( ( T ` x ) =/= Q -> 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 49 | 48 | adantl | |- ( ( ( N ` T ) = 0 /\ x e. X ) -> ( ( T ` x ) =/= Q -> 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 50 | 8 14 | nmosetre | |- ( ( W e. NrmCVec /\ T : X --> Y ) -> { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } C_ RR ) |
| 51 | 5 32 50 | mp2an | |- { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } C_ RR |
| 52 | ressxr | |- RR C_ RR* |
|
| 53 | 51 52 | sstri | |- { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } C_ RR* |
| 54 | simpl | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> x e. X ) |
|
| 55 | 7 9 | nvscl | |- ( ( U e. NrmCVec /\ ( 1 / ( K ` x ) ) e. CC /\ x e. X ) -> ( ( 1 / ( K ` x ) ) R x ) e. X ) |
| 56 | 4 55 | mp3an1 | |- ( ( ( 1 / ( K ` x ) ) e. CC /\ x e. X ) -> ( ( 1 / ( K ` x ) ) R x ) e. X ) |
| 57 | 30 54 56 | syl2anc | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( 1 / ( K ` x ) ) R x ) e. X ) |
| 58 | 24 | necon3i | |- ( ( T ` x ) =/= Q -> x =/= P ) |
| 59 | 7 9 11 13 | nv1 | |- ( ( U e. NrmCVec /\ x e. X /\ x =/= P ) -> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) = 1 ) |
| 60 | 4 59 | mp3an1 | |- ( ( x e. X /\ x =/= P ) -> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) = 1 ) |
| 61 | 58 60 | sylan2 | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) = 1 ) |
| 62 | 1re | |- 1 e. RR |
|
| 63 | 61 62 | eqeltrdi | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) e. RR ) |
| 64 | eqle | |- ( ( ( K ` ( ( 1 / ( K ` x ) ) R x ) ) e. RR /\ ( K ` ( ( 1 / ( K ` x ) ) R x ) ) = 1 ) -> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) <_ 1 ) |
|
| 65 | 63 61 64 | syl2anc | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) <_ 1 ) |
| 66 | 4 5 6 | 3pm3.2i | |- ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) |
| 67 | 7 9 10 3 | lnomul | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( ( 1 / ( K ` x ) ) e. CC /\ x e. X ) ) -> ( T ` ( ( 1 / ( K ` x ) ) R x ) ) = ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) |
| 68 | 66 67 | mpan | |- ( ( ( 1 / ( K ` x ) ) e. CC /\ x e. X ) -> ( T ` ( ( 1 / ( K ` x ) ) R x ) ) = ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) |
| 69 | 30 54 68 | syl2anc | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( T ` ( ( 1 / ( K ` x ) ) R x ) ) = ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) |
| 70 | 69 | eqcomd | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( 1 / ( K ` x ) ) S ( T ` x ) ) = ( T ` ( ( 1 / ( K ` x ) ) R x ) ) ) |
| 71 | 70 | fveq2d | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` ( ( 1 / ( K ` x ) ) R x ) ) ) ) |
| 72 | fveq2 | |- ( z = ( ( 1 / ( K ` x ) ) R x ) -> ( K ` z ) = ( K ` ( ( 1 / ( K ` x ) ) R x ) ) ) |
|
| 73 | 72 | breq1d | |- ( z = ( ( 1 / ( K ` x ) ) R x ) -> ( ( K ` z ) <_ 1 <-> ( K ` ( ( 1 / ( K ` x ) ) R x ) ) <_ 1 ) ) |
| 74 | 2fveq3 | |- ( z = ( ( 1 / ( K ` x ) ) R x ) -> ( M ` ( T ` z ) ) = ( M ` ( T ` ( ( 1 / ( K ` x ) ) R x ) ) ) ) |
|
| 75 | 74 | eqeq2d | |- ( z = ( ( 1 / ( K ` x ) ) R x ) -> ( ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) <-> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` ( ( 1 / ( K ` x ) ) R x ) ) ) ) ) |
| 76 | 73 75 | anbi12d | |- ( z = ( ( 1 / ( K ` x ) ) R x ) -> ( ( ( K ` z ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) <-> ( ( K ` ( ( 1 / ( K ` x ) ) R x ) ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` ( ( 1 / ( K ` x ) ) R x ) ) ) ) ) ) |
| 77 | 76 | rspcev | |- ( ( ( ( 1 / ( K ` x ) ) R x ) e. X /\ ( ( K ` ( ( 1 / ( K ` x ) ) R x ) ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` ( ( 1 / ( K ` x ) ) R x ) ) ) ) ) -> E. z e. X ( ( K ` z ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) ) |
| 78 | 57 65 71 77 | syl12anc | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> E. z e. X ( ( K ` z ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) ) |
| 79 | fvex | |- ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. _V |
|
| 80 | eqeq1 | |- ( y = ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) -> ( y = ( M ` ( T ` z ) ) <-> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) ) |
|
| 81 | 80 | anbi2d | |- ( y = ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) -> ( ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) <-> ( ( K ` z ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) ) ) |
| 82 | 81 | rexbidv | |- ( y = ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) -> ( E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) <-> E. z e. X ( ( K ` z ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) ) ) |
| 83 | 79 82 | elab | |- ( ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } <-> E. z e. X ( ( K ` z ) <_ 1 /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) = ( M ` ( T ` z ) ) ) ) |
| 84 | 78 83 | sylibr | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } ) |
| 85 | supxrub | |- ( ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } C_ RR* /\ ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
|
| 86 | 53 84 85 | sylancr | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
| 87 | 86 | adantll | |- ( ( ( ( N ` T ) = 0 /\ x e. X ) /\ ( T ` x ) =/= Q ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
| 88 | 7 8 13 14 1 | nmooval | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) = sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) ) |
| 89 | 4 5 32 88 | mp3an | |- ( N ` T ) = sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) |
| 90 | 89 | eqeq1i | |- ( ( N ` T ) = 0 <-> sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) = 0 ) |
| 91 | 90 | biimpi | |- ( ( N ` T ) = 0 -> sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) = 0 ) |
| 92 | 91 | ad2antrr | |- ( ( ( ( N ` T ) = 0 /\ x e. X ) /\ ( T ` x ) =/= Q ) -> sup ( { y | E. z e. X ( ( K ` z ) <_ 1 /\ y = ( M ` ( T ` z ) ) ) } , RR* , < ) = 0 ) |
| 93 | 87 92 | breqtrd | |- ( ( ( ( N ` T ) = 0 /\ x e. X ) /\ ( T ` x ) =/= Q ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ 0 ) |
| 94 | 8 14 | nvcl | |- ( ( W e. NrmCVec /\ ( ( 1 / ( K ` x ) ) S ( T ` x ) ) e. Y ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. RR ) |
| 95 | 5 44 94 | sylancr | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. RR ) |
| 96 | 0re | |- 0 e. RR |
|
| 97 | lenlt | |- ( ( ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) e. RR /\ 0 e. RR ) -> ( ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ 0 <-> -. 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
|
| 98 | 95 96 97 | sylancl | |- ( ( x e. X /\ ( T ` x ) =/= Q ) -> ( ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ 0 <-> -. 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 99 | 98 | adantll | |- ( ( ( ( N ` T ) = 0 /\ x e. X ) /\ ( T ` x ) =/= Q ) -> ( ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) <_ 0 <-> -. 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 100 | 93 99 | mpbid | |- ( ( ( ( N ` T ) = 0 /\ x e. X ) /\ ( T ` x ) =/= Q ) -> -. 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) |
| 101 | 100 | ex | |- ( ( ( N ` T ) = 0 /\ x e. X ) -> ( ( T ` x ) =/= Q -> -. 0 < ( M ` ( ( 1 / ( K ` x ) ) S ( T ` x ) ) ) ) ) |
| 102 | 49 101 | pm2.65d | |- ( ( ( N ` T ) = 0 /\ x e. X ) -> -. ( T ` x ) =/= Q ) |
| 103 | nne | |- ( -. ( T ` x ) =/= Q <-> ( T ` x ) = Q ) |
|
| 104 | 102 103 | sylib | |- ( ( ( N ` T ) = 0 /\ x e. X ) -> ( T ` x ) = Q ) |
| 105 | 7 12 2 | 0oval | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ x e. X ) -> ( Z ` x ) = Q ) |
| 106 | 4 5 105 | mp3an12 | |- ( x e. X -> ( Z ` x ) = Q ) |
| 107 | 106 | adantl | |- ( ( ( N ` T ) = 0 /\ x e. X ) -> ( Z ` x ) = Q ) |
| 108 | 104 107 | eqtr4d | |- ( ( ( N ` T ) = 0 /\ x e. X ) -> ( T ` x ) = ( Z ` x ) ) |
| 109 | 108 | ralrimiva | |- ( ( N ` T ) = 0 -> A. x e. X ( T ` x ) = ( Z ` x ) ) |
| 110 | ffn | |- ( T : X --> Y -> T Fn X ) |
|
| 111 | 32 110 | ax-mp | |- T Fn X |
| 112 | 7 8 2 | 0oo | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> Z : X --> Y ) |
| 113 | 4 5 112 | mp2an | |- Z : X --> Y |
| 114 | ffn | |- ( Z : X --> Y -> Z Fn X ) |
|
| 115 | 113 114 | ax-mp | |- Z Fn X |
| 116 | eqfnfv | |- ( ( T Fn X /\ Z Fn X ) -> ( T = Z <-> A. x e. X ( T ` x ) = ( Z ` x ) ) ) |
|
| 117 | 111 115 116 | mp2an | |- ( T = Z <-> A. x e. X ( T ` x ) = ( Z ` x ) ) |
| 118 | 109 117 | sylibr | |- ( ( N ` T ) = 0 -> T = Z ) |
| 119 | fveq2 | |- ( T = Z -> ( N ` T ) = ( N ` Z ) ) |
|
| 120 | 1 2 | nmoo0 | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( N ` Z ) = 0 ) |
| 121 | 4 5 120 | mp2an | |- ( N ` Z ) = 0 |
| 122 | 119 121 | eqtrdi | |- ( T = Z -> ( N ` T ) = 0 ) |
| 123 | 118 122 | impbii | |- ( ( N ` T ) = 0 <-> T = Z ) |