This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set in the supremum of the operator norm definition df-nmoo is a set of reals. (Contributed by NM, 13-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmosetre.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| nmosetre.4 | ⊢ 𝑁 = ( normCV ‘ 𝑊 ) | ||
| Assertion | nmosetre | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝑀 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmosetre.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 2 | nmosetre.4 | ⊢ 𝑁 = ( normCV ‘ 𝑊 ) | |
| 3 | ffvelcdm | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑧 ) ∈ 𝑌 ) | |
| 4 | 1 2 | nvcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑧 ) ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) |
| 6 | 5 | anassrs | ⊢ ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) |
| 7 | eleq1 | ⊢ ( 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) → ( 𝑥 ∈ ℝ ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) ) | |
| 8 | 6 7 | imbitrrid | ⊢ ( 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) → ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑥 ∈ ℝ ) ) |
| 9 | 8 | impcom | ⊢ ( ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) ) → 𝑥 ∈ ℝ ) |
| 10 | 9 | adantrl | ⊢ ( ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) ∧ ( ( 𝑀 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 11 | 10 | rexlimdva2 | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ∃ 𝑧 ∈ 𝑋 ( ( 𝑀 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) ) → 𝑥 ∈ ℝ ) ) |
| 12 | 11 | abssdv | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝑀 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ ) |