This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 6-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmlno0.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| nmlno0.0 | ⊢ 𝑍 = ( 𝑈 0op 𝑊 ) | ||
| nmlno0.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| nmlno0i.u | ⊢ 𝑈 ∈ NrmCVec | ||
| nmlno0i.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | nmlno0i | ⊢ ( 𝑇 ∈ 𝐿 → ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ 𝑇 = 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlno0.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 2 | nmlno0.0 | ⊢ 𝑍 = ( 𝑈 0op 𝑊 ) | |
| 3 | nmlno0.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 4 | nmlno0i.u | ⊢ 𝑈 ∈ NrmCVec | |
| 5 | nmlno0i.w | ⊢ 𝑊 ∈ NrmCVec | |
| 6 | fveqeq2 | ⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) → ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ ( 𝑁 ‘ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) ) = 0 ) ) | |
| 7 | eqeq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) → ( 𝑇 = 𝑍 ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) = 𝑍 ) ) | |
| 8 | 6 7 | bibi12d | ⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) → ( ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ 𝑇 = 𝑍 ) ↔ ( ( 𝑁 ‘ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) ) = 0 ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) = 𝑍 ) ) ) |
| 9 | 2 3 | 0lno | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑍 ∈ 𝐿 ) |
| 10 | 4 5 9 | mp2an | ⊢ 𝑍 ∈ 𝐿 |
| 11 | 10 | elimel | ⊢ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) ∈ 𝐿 |
| 12 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 13 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 14 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 15 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 16 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 17 | eqid | ⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) | |
| 18 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 19 | eqid | ⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) | |
| 20 | 1 2 3 4 5 11 12 13 14 15 16 17 18 19 | nmlno0lem | ⊢ ( ( 𝑁 ‘ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) ) = 0 ↔ if ( 𝑇 ∈ 𝐿 , 𝑇 , 𝑍 ) = 𝑍 ) |
| 21 | 8 20 | dedth | ⊢ ( 𝑇 ∈ 𝐿 → ( ( 𝑁 ‘ 𝑇 ) = 0 ↔ 𝑇 = 𝑍 ) ) |