This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm of the zero operator. (Contributed by NM, 27-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoo0.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| nmoo0.0 | ⊢ 𝑍 = ( 𝑈 0op 𝑊 ) | ||
| Assertion | nmoo0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑁 ‘ 𝑍 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoo0.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 2 | nmoo0.0 | ⊢ 𝑍 = ( 𝑈 0op 𝑊 ) | |
| 3 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 5 | 3 4 2 | 0oo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑍 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 6 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) | |
| 8 | 3 4 6 7 1 | nmooval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑍 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ 𝑍 ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 9 | 5 8 | mpd3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑁 ‘ 𝑍 ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 10 | df-sn | ⊢ { 0 } = { 𝑥 ∣ 𝑥 = 0 } | |
| 11 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 12 | 3 11 | nvzcl | ⊢ ( 𝑈 ∈ NrmCVec → ( 0vec ‘ 𝑈 ) ∈ ( BaseSet ‘ 𝑈 ) ) |
| 13 | 11 6 | nvz0 | ⊢ ( 𝑈 ∈ NrmCVec → ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) = 0 ) |
| 14 | 0le1 | ⊢ 0 ≤ 1 | |
| 15 | 13 14 | eqbrtrdi | ⊢ ( 𝑈 ∈ NrmCVec → ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ≤ 1 ) |
| 16 | fveq2 | ⊢ ( 𝑧 = ( 0vec ‘ 𝑈 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) | |
| 17 | 16 | breq1d | ⊢ ( 𝑧 = ( 0vec ‘ 𝑈 ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ↔ ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ≤ 1 ) ) |
| 18 | 17 | rspcev | ⊢ ( ( ( 0vec ‘ 𝑈 ) ∈ ( BaseSet ‘ 𝑈 ) ∧ ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ≤ 1 ) → ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ) |
| 19 | 12 15 18 | syl2anc | ⊢ ( 𝑈 ∈ NrmCVec → ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ) |
| 20 | 19 | biantrurd | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 = 0 ↔ ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑥 = 0 ↔ ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ) ) |
| 22 | eqid | ⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) | |
| 23 | 3 22 2 | 0oval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑍 ‘ 𝑧 ) = ( 0vec ‘ 𝑊 ) ) |
| 24 | 23 | 3expa | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑍 ‘ 𝑧 ) = ( 0vec ‘ 𝑊 ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( 0vec ‘ 𝑊 ) ) ) |
| 26 | 22 7 | nvz0 | ⊢ ( 𝑊 ∈ NrmCVec → ( ( normCV ‘ 𝑊 ) ‘ ( 0vec ‘ 𝑊 ) ) = 0 ) |
| 27 | 26 | ad2antlr | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 0vec ‘ 𝑊 ) ) = 0 ) |
| 28 | 25 27 | eqtrd | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) = 0 ) |
| 29 | 28 | eqeq2d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ↔ 𝑥 = 0 ) ) |
| 30 | 29 | anbi2d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) ↔ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ) ) |
| 31 | 30 | rexbidva | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) ↔ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ) ) |
| 32 | r19.41v | ⊢ ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ↔ ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ) | |
| 33 | 31 32 | bitr2di | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ↔ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) ) ) |
| 34 | 21 33 | bitrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑥 = 0 ↔ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) ) ) |
| 35 | 34 | abbidv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → { 𝑥 ∣ 𝑥 = 0 } = { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) } ) |
| 36 | 10 35 | eqtr2id | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) } = { 0 } ) |
| 37 | 36 | supeq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) } , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) ) |
| 38 | 9 37 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑁 ‘ 𝑍 ) = sup ( { 0 } , ℝ* , < ) ) |
| 39 | xrltso | ⊢ < Or ℝ* | |
| 40 | 0xr | ⊢ 0 ∈ ℝ* | |
| 41 | supsn | ⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) | |
| 42 | 39 40 41 | mp2an | ⊢ sup ( { 0 } , ℝ* , < ) = 0 |
| 43 | 38 42 | eqtrdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑁 ‘ 𝑍 ) = 0 ) |