This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvz.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvz.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| nvz.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvz.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvz.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 3 | nvz.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 6 | 1 4 5 2 3 | nvi | ⊢ ( 𝑈 ∈ NrmCVec → ( 〈 ( +𝑣 ‘ 𝑈 ) , ( ·𝑠OLD ‘ 𝑈 ) 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 7 | 6 | simp3d | ⊢ ( 𝑈 ∈ NrmCVec → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 8 | simp1 | ⊢ ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ) | |
| 9 | 8 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 ( +𝑣 ‘ 𝑈 ) 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ) |
| 10 | fveqeq2 | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ ( 𝑁 ‘ 𝐴 ) = 0 ) ) | |
| 11 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑍 ↔ 𝐴 = 𝑍 ) ) | |
| 12 | 10 11 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ↔ ( ( 𝑁 ‘ 𝐴 ) = 0 → 𝐴 = 𝑍 ) ) ) |
| 13 | 12 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) → ( 𝐴 ∈ 𝑋 → ( ( 𝑁 ‘ 𝐴 ) = 0 → 𝐴 = 𝑍 ) ) ) |
| 14 | 7 9 13 | 3syl | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝐴 ∈ 𝑋 → ( ( 𝑁 ‘ 𝐴 ) = 0 → 𝐴 = 𝑍 ) ) ) |
| 15 | 14 | imp | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 0 → 𝐴 = 𝑍 ) ) |
| 16 | fveq2 | ⊢ ( 𝐴 = 𝑍 → ( 𝑁 ‘ 𝐴 ) = ( 𝑁 ‘ 𝑍 ) ) | |
| 17 | 2 3 | nvz0 | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ 𝑍 ) = 0 ) |
| 18 | 16 17 | sylan9eqr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 = 𝑍 ) → ( 𝑁 ‘ 𝐴 ) = 0 ) |
| 19 | 18 | ex | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝐴 = 𝑍 → ( 𝑁 ‘ 𝐴 ) = 0 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 = 𝑍 → ( 𝑁 ‘ 𝐴 ) = 0 ) ) |
| 21 | 15 20 | impbid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) ) |