This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero operator is an operator. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0oo.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 0oo.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| 0oo.0 | ⊢ 𝑍 = ( 𝑈 0op 𝑊 ) | ||
| Assertion | 0oo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑍 : 𝑋 ⟶ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0oo.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | 0oo.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | 0oo.0 | ⊢ 𝑍 = ( 𝑈 0op 𝑊 ) | |
| 4 | fvex | ⊢ ( 0vec ‘ 𝑊 ) ∈ V | |
| 5 | 4 | fconst | ⊢ ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) : 𝑋 ⟶ { ( 0vec ‘ 𝑊 ) } |
| 6 | eqid | ⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) | |
| 7 | 2 6 | nvzcl | ⊢ ( 𝑊 ∈ NrmCVec → ( 0vec ‘ 𝑊 ) ∈ 𝑌 ) |
| 8 | 7 | snssd | ⊢ ( 𝑊 ∈ NrmCVec → { ( 0vec ‘ 𝑊 ) } ⊆ 𝑌 ) |
| 9 | fss | ⊢ ( ( ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) : 𝑋 ⟶ { ( 0vec ‘ 𝑊 ) } ∧ { ( 0vec ‘ 𝑊 ) } ⊆ 𝑌 ) → ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) : 𝑋 ⟶ 𝑌 ) | |
| 10 | 5 8 9 | sylancr | ⊢ ( 𝑊 ∈ NrmCVec → ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) : 𝑋 ⟶ 𝑌 ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) : 𝑋 ⟶ 𝑌 ) |
| 12 | 1 6 3 | 0ofval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑍 = ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) ) |
| 13 | 12 | feq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑍 : 𝑋 ⟶ 𝑌 ↔ ( 𝑋 × { ( 0vec ‘ 𝑊 ) } ) : 𝑋 ⟶ 𝑌 ) ) |
| 14 | 11 13 | mpbird | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑍 : 𝑋 ⟶ 𝑌 ) |