This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: From any nonzero vector, construct a vector whose norm is one. (Contributed by NM, 6-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nv1.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nv1.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nv1.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| nv1.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nv1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍 ) → ( 𝑁 ‘ ( ( 1 / ( 𝑁 ‘ 𝐴 ) ) 𝑆 𝐴 ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nv1.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nv1.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | nv1.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 4 | nv1.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 5 | simp1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍 ) → 𝑈 ∈ NrmCVec ) | |
| 6 | 1 4 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 8 | 1 3 4 | nvz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) ) |
| 9 | 8 | necon3bid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 𝑍 ) ) |
| 10 | 9 | biimp3ar | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍 ) → ( 𝑁 ‘ 𝐴 ) ≠ 0 ) |
| 11 | 7 10 | rereccld | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍 ) → ( 1 / ( 𝑁 ‘ 𝐴 ) ) ∈ ℝ ) |
| 12 | 1 3 4 | nvgt0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ≠ 𝑍 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |
| 13 | 12 | biimp3a | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍 ) → 0 < ( 𝑁 ‘ 𝐴 ) ) |
| 14 | 1re | ⊢ 1 ∈ ℝ | |
| 15 | 0le1 | ⊢ 0 ≤ 1 | |
| 16 | divge0 | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( ( 𝑁 ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( 𝑁 ‘ 𝐴 ) ) ) → 0 ≤ ( 1 / ( 𝑁 ‘ 𝐴 ) ) ) | |
| 17 | 14 15 16 | mpanl12 | ⊢ ( ( ( 𝑁 ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( 𝑁 ‘ 𝐴 ) ) → 0 ≤ ( 1 / ( 𝑁 ‘ 𝐴 ) ) ) |
| 18 | 7 13 17 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍 ) → 0 ≤ ( 1 / ( 𝑁 ‘ 𝐴 ) ) ) |
| 19 | simp2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍 ) → 𝐴 ∈ 𝑋 ) | |
| 20 | 1 2 4 | nvsge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 1 / ( 𝑁 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 1 / ( 𝑁 ‘ 𝐴 ) ) ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 1 / ( 𝑁 ‘ 𝐴 ) ) 𝑆 𝐴 ) ) = ( ( 1 / ( 𝑁 ‘ 𝐴 ) ) · ( 𝑁 ‘ 𝐴 ) ) ) |
| 21 | 5 11 18 19 20 | syl121anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍 ) → ( 𝑁 ‘ ( ( 1 / ( 𝑁 ‘ 𝐴 ) ) 𝑆 𝐴 ) ) = ( ( 1 / ( 𝑁 ‘ 𝐴 ) ) · ( 𝑁 ‘ 𝐴 ) ) ) |
| 22 | 6 | recnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℂ ) |
| 23 | 22 | 3adant3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℂ ) |
| 24 | 23 10 | recid2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍 ) → ( ( 1 / ( 𝑁 ‘ 𝐴 ) ) · ( 𝑁 ‘ 𝐴 ) ) = 1 ) |
| 25 | 21 24 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ≠ 𝑍 ) → ( 𝑁 ‘ ( ( 1 / ( 𝑁 ‘ 𝐴 ) ) 𝑆 𝐴 ) ) = 1 ) |