This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmul0or.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvmul0or.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nvmul0or.6 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| Assertion | nvmul0or | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑆 𝐵 ) = 𝑍 ↔ ( 𝐴 = 0 ∨ 𝐵 = 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmul0or.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvmul0or.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 3 | nvmul0or.6 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 4 | df-ne | ⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) | |
| 5 | oveq2 | ⊢ ( ( 𝐴 𝑆 𝐵 ) = 𝑍 → ( ( 1 / 𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) = ( ( 1 / 𝐴 ) 𝑆 𝑍 ) ) | |
| 6 | 5 | ad2antlr | ⊢ ( ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) = ( ( 1 / 𝐴 ) 𝑆 𝑍 ) ) |
| 7 | recid2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) | |
| 8 | 7 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) 𝑆 𝐵 ) = ( 1 𝑆 𝐵 ) ) |
| 9 | 8 | 3ad2antl2 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) 𝑆 𝐵 ) = ( 1 𝑆 𝐵 ) ) |
| 10 | simpl1 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → 𝑈 ∈ NrmCVec ) | |
| 11 | reccl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) | |
| 12 | 11 | 3ad2antl2 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 13 | simpl2 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℂ ) | |
| 14 | simpl3 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ 𝑋 ) | |
| 15 | 1 2 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 1 / 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) 𝑆 𝐵 ) = ( ( 1 / 𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) ) |
| 16 | 10 12 13 14 15 | syl13anc | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) 𝑆 𝐵 ) = ( ( 1 / 𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) ) |
| 17 | 1 2 | nvsid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 1 𝑆 𝐵 ) = 𝐵 ) |
| 18 | 17 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 1 𝑆 𝐵 ) = 𝐵 ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → ( 1 𝑆 𝐵 ) = 𝐵 ) |
| 20 | 9 16 19 | 3eqtr3d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) = 𝐵 ) |
| 21 | 20 | adantlr | ⊢ ( ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) 𝑆 ( 𝐴 𝑆 𝐵 ) ) = 𝐵 ) |
| 22 | 2 3 | nvsz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 / 𝐴 ) ∈ ℂ ) → ( ( 1 / 𝐴 ) 𝑆 𝑍 ) = 𝑍 ) |
| 23 | 11 22 | sylan2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) → ( ( 1 / 𝐴 ) 𝑆 𝑍 ) = 𝑍 ) |
| 24 | 23 | anassrs | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) 𝑆 𝑍 ) = 𝑍 ) |
| 25 | 24 | 3adantl3 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) 𝑆 𝑍 ) = 𝑍 ) |
| 26 | 25 | adantlr | ⊢ ( ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ∧ 𝐴 ≠ 0 ) → ( ( 1 / 𝐴 ) 𝑆 𝑍 ) = 𝑍 ) |
| 27 | 6 21 26 | 3eqtr3d | ⊢ ( ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ∧ 𝐴 ≠ 0 ) → 𝐵 = 𝑍 ) |
| 28 | 27 | ex | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) → ( 𝐴 ≠ 0 → 𝐵 = 𝑍 ) ) |
| 29 | 4 28 | biimtrrid | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) → ( ¬ 𝐴 = 0 → 𝐵 = 𝑍 ) ) |
| 30 | 29 | orrd | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝑆 𝐵 ) = 𝑍 ) → ( 𝐴 = 0 ∨ 𝐵 = 𝑍 ) ) |
| 31 | 30 | ex | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑆 𝐵 ) = 𝑍 → ( 𝐴 = 0 ∨ 𝐵 = 𝑍 ) ) ) |
| 32 | 1 2 3 | nv0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 0 𝑆 𝐵 ) = 𝑍 ) |
| 33 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 𝑆 𝐵 ) = ( 0 𝑆 𝐵 ) ) | |
| 34 | 33 | eqeq1d | ⊢ ( 𝐴 = 0 → ( ( 𝐴 𝑆 𝐵 ) = 𝑍 ↔ ( 0 𝑆 𝐵 ) = 𝑍 ) ) |
| 35 | 32 34 | syl5ibrcom | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 = 0 → ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ) |
| 36 | 35 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 = 0 → ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ) |
| 37 | 2 3 | nvsz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ) → ( 𝐴 𝑆 𝑍 ) = 𝑍 ) |
| 38 | oveq2 | ⊢ ( 𝐵 = 𝑍 → ( 𝐴 𝑆 𝐵 ) = ( 𝐴 𝑆 𝑍 ) ) | |
| 39 | 38 | eqeq1d | ⊢ ( 𝐵 = 𝑍 → ( ( 𝐴 𝑆 𝐵 ) = 𝑍 ↔ ( 𝐴 𝑆 𝑍 ) = 𝑍 ) ) |
| 40 | 37 39 | syl5ibrcom | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ) → ( 𝐵 = 𝑍 → ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ) |
| 41 | 40 | 3adant3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 = 𝑍 → ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ) |
| 42 | 36 41 | jaod | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 = 0 ∨ 𝐵 = 𝑍 ) → ( 𝐴 𝑆 𝐵 ) = 𝑍 ) ) |
| 43 | 31 42 | impbid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑆 𝐵 ) = 𝑍 ↔ ( 𝐴 = 0 ∨ 𝐵 = 𝑍 ) ) ) |