This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero norm is positive. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvgt0.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvgt0.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| nvgt0.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvgt0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ≠ 𝑍 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvgt0.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvgt0.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 3 | nvgt0.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | 1 2 3 | nvz | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) = 0 ↔ 𝐴 = 𝑍 ) ) |
| 5 | 4 | necon3bid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 𝑍 ) ) |
| 6 | 1 3 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 7 | 1 3 | nvge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
| 8 | ne0gt0 | ⊢ ( ( ( 𝑁 ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ 𝐴 ) ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ≠ 0 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |
| 10 | 5 9 | bitr3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ≠ 𝑍 ↔ 0 < ( 𝑁 ‘ 𝐴 ) ) ) |