This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < x there is a j such that for all j <_ k the functions F ( k ) and F ( j ) are uniformly within x of each other on S . This is the four-quantifier version, see ulmcau2 for the more conventional five-quantifier version. (Contributed by Mario Carneiro, 1-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmcau.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| ulmcau.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| ulmcau.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| ulmcau.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | ||
| Assertion | ulmcau | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmcau.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | ulmcau.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | ulmcau.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | ulmcau.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 5 | eldmg | ⊢ ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∃ 𝑔 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ) | |
| 6 | 5 | ibi | ⊢ ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ∃ 𝑔 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) |
| 7 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 8 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 9 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) | |
| 10 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑔 ‘ 𝑧 ) = ( 𝑔 ‘ 𝑧 ) ) | |
| 11 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) | |
| 12 | rphalfcl | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) | |
| 13 | 12 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 14 | 1 7 8 9 10 11 13 | ulmi | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) |
| 15 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) | |
| 16 | 15 1 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 17 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) | |
| 18 | uzid | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 19 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 20 | 19 | fveq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) |
| 21 | 20 | fvoveq1d | ⊢ ( 𝑘 = 𝑗 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 22 | 21 | breq1d | ⊢ ( 𝑘 = 𝑗 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 23 | 22 | ralbidv | ⊢ ( 𝑘 = 𝑗 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 24 | 23 | rspcv | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 25 | 16 17 18 24 | 4syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 26 | r19.26 | ⊢ ( ∀ 𝑧 ∈ 𝑆 ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ↔ ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) | |
| 27 | 8 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 29 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) | |
| 30 | 28 29 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
| 31 | 30 | ffvelcdmda | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ) |
| 32 | ulmcl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 → 𝑔 : 𝑆 ⟶ ℂ ) | |
| 33 | 32 | ad4antlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑔 : 𝑆 ⟶ ℂ ) |
| 34 | 33 | ffvelcdmda | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑔 ‘ 𝑧 ) ∈ ℂ ) |
| 35 | 31 34 | abssubd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ) |
| 36 | 35 | breq1d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 37 | 36 | biimpd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ) |
| 38 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 39 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) | |
| 40 | 8 38 39 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 41 | 40 | anassrs | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 42 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) | |
| 43 | 41 42 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 44 | 43 | ffvelcdmda | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 45 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 46 | 45 | ad4antlr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ ℝ ) |
| 47 | abs3lem | ⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ∧ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ) ∧ ( ( 𝑔 ‘ 𝑧 ) ∈ ℂ ∧ 𝑥 ∈ ℝ ) ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) | |
| 48 | 44 31 34 46 47 | syl22anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( 𝑔 ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 49 | 37 48 | sylan2d | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 50 | 49 | ancomsd | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 51 | 50 | ralimdva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 52 | 26 51 | biimtrrid | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 53 | 52 | expdimp | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 54 | 53 | an32s | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 55 | 54 | ralimdva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 56 | 55 | ex | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 57 | 56 | com23 | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) ) |
| 58 | 25 57 | mpdd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 59 | 58 | reximdva | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝑔 ‘ 𝑧 ) ) ) < ( 𝑥 / 2 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 60 | 14 59 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) |
| 61 | 60 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) |
| 62 | 61 | ex | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 63 | 62 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑔 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝑔 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 64 | 6 63 | syl5 | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 65 | ulmrel | ⊢ Rel ( ⇝𝑢 ‘ 𝑆 ) | |
| 66 | 1 2 3 4 | ulmcaulem | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |
| 67 | 66 | biimpa | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ) |
| 68 | rphalfcl | ⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ ) | |
| 69 | breq2 | ⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) | |
| 70 | 69 | ralbidv | ⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 71 | 70 | 2ralbidv | ⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 72 | 71 | rexbidv | ⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 73 | ralcom | ⊢ ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ) | |
| 74 | fveq2 | ⊢ ( 𝑞 = 𝑘 → ( ℤ≥ ‘ 𝑞 ) = ( ℤ≥ ‘ 𝑘 ) ) | |
| 75 | fveq2 | ⊢ ( 𝑤 = 𝑧 → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) ) | |
| 76 | fveq2 | ⊢ ( 𝑤 = 𝑧 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) | |
| 77 | 75 76 | oveq12d | ⊢ ( 𝑤 = 𝑧 → ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) = ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) |
| 78 | 77 | fveq2d | ⊢ ( 𝑤 = 𝑧 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 79 | 78 | breq1d | ⊢ ( 𝑤 = 𝑧 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 80 | 79 | cbvralvw | ⊢ ( ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) |
| 81 | fveq2 | ⊢ ( 𝑞 = 𝑘 → ( 𝐹 ‘ 𝑞 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 82 | 81 | fveq1d | ⊢ ( 𝑞 = 𝑘 → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 83 | 82 | fvoveq1d | ⊢ ( 𝑞 = 𝑘 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) ) |
| 84 | 83 | breq1d | ⊢ ( 𝑞 = 𝑘 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 85 | 84 | ralbidv | ⊢ ( 𝑞 = 𝑘 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 86 | 80 85 | bitrid | ⊢ ( 𝑞 = 𝑘 → ( ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 87 | 74 86 | raleqbidv | ⊢ ( 𝑞 = 𝑘 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 88 | 73 87 | bitrid | ⊢ ( 𝑞 = 𝑘 → ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 89 | 88 | cbvralvw | ⊢ ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) |
| 90 | fveq2 | ⊢ ( 𝑝 = 𝑗 → ( ℤ≥ ‘ 𝑝 ) = ( ℤ≥ ‘ 𝑗 ) ) | |
| 91 | 90 | raleqdv | ⊢ ( 𝑝 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 92 | 89 91 | bitrid | ⊢ ( 𝑝 = 𝑗 → ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 93 | 92 | cbvrexvw | ⊢ ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < ( 𝑟 / 2 ) ) |
| 94 | 72 93 | bitr4di | ⊢ ( 𝑥 = ( 𝑟 / 2 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ) ) |
| 95 | 94 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑧 ) ) ) < 𝑥 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ) |
| 96 | 67 68 95 | syl2an | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ) |
| 97 | 1 | uztrn2 | ⊢ ( ( 𝑝 ∈ 𝑍 ∧ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ) → 𝑞 ∈ 𝑍 ) |
| 98 | eqid | ⊢ ( ℤ≥ ‘ 𝑞 ) = ( ℤ≥ ‘ 𝑞 ) | |
| 99 | eluzelz | ⊢ ( 𝑞 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑞 ∈ ℤ ) | |
| 100 | 99 1 | eleq2s | ⊢ ( 𝑞 ∈ 𝑍 → 𝑞 ∈ ℤ ) |
| 101 | 100 | ad2antlr | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑞 ∈ ℤ ) |
| 102 | 68 | adantl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 103 | 102 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 104 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑞 ∈ 𝑍 ) | |
| 105 | 1 | uztrn2 | ⊢ ( ( 𝑞 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝑚 ∈ 𝑍 ) |
| 106 | 104 105 | sylan | ⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝑚 ∈ 𝑍 ) |
| 107 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 108 | 107 | fveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 109 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) | |
| 110 | fvex | ⊢ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ∈ V | |
| 111 | 108 109 110 | fvmpt | ⊢ ( 𝑚 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 112 | 106 111 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) |
| 113 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 114 | 113 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 115 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) | |
| 116 | 114 115 | syl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) |
| 117 | 116 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ∈ ℂ ) |
| 118 | 117 | an32s | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ∈ ℂ ) |
| 119 | 118 | fmpttd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) : 𝑍 ⟶ ℂ ) |
| 120 | 119 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑞 ∈ 𝑍 ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) ∈ ℂ ) |
| 121 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) | |
| 122 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) | |
| 123 | 121 122 | oveq12d | ⊢ ( 𝑧 = 𝑦 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) |
| 124 | 123 | fveq2d | ⊢ ( 𝑧 = 𝑦 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) ) |
| 125 | 124 | breq1d | ⊢ ( 𝑧 = 𝑦 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 126 | 125 | rspcv | ⊢ ( 𝑦 ∈ 𝑆 → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 127 | 126 | ralimdv | ⊢ ( 𝑦 ∈ 𝑆 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 128 | 127 | reximdv | ⊢ ( 𝑦 ∈ 𝑆 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 129 | 128 | ralimdv | ⊢ ( 𝑦 ∈ 𝑆 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 130 | 129 | impcom | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) |
| 131 | 130 | adantll | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) |
| 132 | fveq2 | ⊢ ( 𝑞 = 𝑘 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) = ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) ) | |
| 133 | 132 | fvoveq1d | ⊢ ( 𝑞 = 𝑘 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) = ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) ) |
| 134 | 133 | breq1d | ⊢ ( 𝑞 = 𝑘 → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ) ) |
| 135 | 134 | cbvralvw | ⊢ ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ) |
| 136 | fveq2 | ⊢ ( 𝑝 = 𝑗 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) = ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) | |
| 137 | 136 | oveq2d | ⊢ ( 𝑝 = 𝑗 → ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) = ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) |
| 138 | 137 | fveq2d | ⊢ ( 𝑝 = 𝑗 → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) = ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) ) |
| 139 | 138 | breq1d | ⊢ ( 𝑝 = 𝑗 → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ) ) |
| 140 | 90 139 | raleqbidv | ⊢ ( 𝑝 = 𝑗 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ) ) |
| 141 | 135 140 | bitrid | ⊢ ( 𝑝 = 𝑗 → ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ) ) |
| 142 | 141 | cbvrexvw | ⊢ ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ) |
| 143 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 144 | 143 | fveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
| 145 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) | |
| 146 | fvex | ⊢ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ∈ V | |
| 147 | 144 145 146 | fvmpt | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
| 148 | 38 147 | syl | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) ) |
| 149 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 150 | 149 | fveq1d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
| 151 | fvex | ⊢ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ∈ V | |
| 152 | 150 145 151 | fvmpt | ⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
| 153 | 152 | adantr | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) |
| 154 | 148 153 | oveq12d | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) |
| 155 | 154 | fveq2d | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) ) |
| 156 | 155 | breq1d | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ) ) |
| 157 | 156 | ralbidva | ⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ) ) |
| 158 | 157 | rexbiia | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑗 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ) |
| 159 | 142 158 | bitri | ⊢ ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ) |
| 160 | breq2 | ⊢ ( 𝑟 = 𝑥 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) | |
| 161 | 160 | ralbidv | ⊢ ( 𝑟 = 𝑥 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 162 | 161 | rexbidv | ⊢ ( 𝑟 = 𝑥 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 163 | 159 162 | bitrid | ⊢ ( 𝑟 = 𝑥 → ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) ) |
| 164 | 163 | cbvralvw | ⊢ ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑦 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑦 ) ) ) < 𝑥 ) |
| 165 | 131 164 | sylibr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ( abs ‘ ( ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑞 ) − ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑝 ) ) ) < 𝑟 ) |
| 166 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 167 | 166 | mptex | ⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ V |
| 168 | 167 | a1i | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ V ) |
| 169 | 1 120 165 168 | caucvg | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) |
| 170 | 169 | ralrimiva | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) |
| 171 | 170 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ) |
| 172 | fveq2 | ⊢ ( 𝑦 = 𝑤 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) | |
| 173 | 172 | mpteq2dv | ⊢ ( 𝑦 = 𝑤 → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) |
| 174 | 173 | eleq1d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ↔ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ∈ dom ⇝ ) ) |
| 175 | 174 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝑆 ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ∧ 𝑤 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ∈ dom ⇝ ) |
| 176 | 171 175 | sylan | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ∈ dom ⇝ ) |
| 177 | climdm | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ∈ dom ⇝ ↔ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) | |
| 178 | 176 177 | sylib | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
| 179 | 98 101 103 112 178 | climi2 | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) |
| 180 | 98 | r19.29uz | ⊢ ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) ) |
| 181 | 98 | r19.2uz | ⊢ ( ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) ) |
| 182 | 180 181 | syl | ⊢ ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) ) |
| 183 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 184 | 183 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑞 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 185 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑞 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑞 ) : 𝑆 ⟶ ℂ ) | |
| 186 | 184 185 | syl | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑞 ) : 𝑆 ⟶ ℂ ) |
| 187 | 186 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ∈ ℂ ) |
| 188 | 187 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ∈ ℂ ) |
| 189 | climcl | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ ℂ ) | |
| 190 | 178 189 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ ℂ ) |
| 191 | 190 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ ℂ ) |
| 192 | 4 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 193 | 192 106 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 194 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑚 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑚 ) : 𝑆 ⟶ ℂ ) | |
| 195 | 193 194 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( 𝐹 ‘ 𝑚 ) : 𝑆 ⟶ ℂ ) |
| 196 | simplr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝑤 ∈ 𝑆 ) | |
| 197 | 195 196 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ∈ ℂ ) |
| 198 | rpre | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) | |
| 199 | 198 | ad4antlr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → 𝑟 ∈ ℝ ) |
| 200 | abs3lem | ⊢ ( ( ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ∈ ℂ ∧ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ ℂ ) ∧ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ∈ ℂ ∧ 𝑟 ∈ ℝ ) ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) | |
| 201 | 188 191 197 199 200 | syl22anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ) → ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 202 | 201 | rexlimdva | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 203 | 182 202 | syl5 | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑣 ∈ ( ℤ≥ ‘ 𝑞 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑣 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < ( 𝑟 / 2 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 204 | 179 203 | mpan2d | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) ∧ 𝑤 ∈ 𝑆 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 205 | 204 | ralimdva | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑞 ∈ 𝑍 ) → ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 206 | 97 205 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑝 ∈ 𝑍 ∧ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ) ) → ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 207 | 206 | anassrs | ⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑍 ) ∧ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ) → ( ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 208 | 207 | ralimdva | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑝 ∈ 𝑍 ) → ( ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 209 | 208 | reximdva | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑞 ) ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑤 ) ) ) < ( 𝑟 / 2 ) → ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 210 | 96 209 | mpd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) |
| 211 | 210 | ralrimiva | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) |
| 212 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝑀 ∈ ℤ ) |
| 213 | eqidd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ ( 𝑞 ∈ 𝑍 ∧ 𝑤 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) ) | |
| 214 | 173 | fveq2d | ⊢ ( 𝑦 = 𝑤 → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) = ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
| 215 | eqid | ⊢ ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) | |
| 216 | fvex | ⊢ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ∈ V | |
| 217 | 214 215 216 | fvmpt | ⊢ ( 𝑤 ∈ 𝑆 → ( ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ‘ 𝑤 ) = ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
| 218 | 217 | adantl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ‘ 𝑤 ) = ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) |
| 219 | climdm | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ dom ⇝ ↔ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) | |
| 220 | 169 219 | sylib | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) |
| 221 | climcl | ⊢ ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ∈ ℂ ) | |
| 222 | 220 221 | syl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ∧ 𝑦 ∈ 𝑆 ) → ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 223 | 222 | fmpttd | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) : 𝑆 ⟶ ℂ ) |
| 224 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝑆 ∈ 𝑉 ) |
| 225 | 1 212 113 213 218 223 224 | ulm2 | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑝 ∈ 𝑍 ∀ 𝑞 ∈ ( ℤ≥ ‘ 𝑝 ) ∀ 𝑤 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑞 ) ‘ 𝑤 ) − ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑤 ) ) ) ) ) < 𝑟 ) ) |
| 226 | 211 225 | mpbird | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ) |
| 227 | releldm | ⊢ ( ( Rel ( ⇝𝑢 ‘ 𝑆 ) ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) ( 𝑦 ∈ 𝑆 ↦ ( ⇝ ‘ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑦 ) ) ) ) ) → 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) | |
| 228 | 65 226 227 | sylancr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) → 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) |
| 229 | 228 | ex | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 → 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ) ) |
| 230 | 64 229 | impbid | ⊢ ( 𝜑 → ( 𝐹 ∈ dom ( ⇝𝑢 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) < 𝑥 ) ) |