This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A converging sequence of complex numbers is a Cauchy sequence. Theorem 12-5.3 of Gleason p. 180 (necessity part). (Contributed by NM, 16-Apr-2005) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | climcau.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | climcau | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcau.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | df-br | ⊢ ( 𝐹 ⇝ 𝑦 ↔ 〈 𝐹 , 𝑦 〉 ∈ ⇝ ) | |
| 3 | simpll | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) | |
| 4 | rphalfcl | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 6 | eqidd | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 7 | simplr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ⇝ 𝑦 ) | |
| 8 | 1 3 5 6 7 | climi | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) |
| 9 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) | |
| 10 | uzid | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 12 | 11 1 | eleq2s | ⊢ ( 𝑗 ∈ 𝑍 → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 13 | 12 | adantl | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 14 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) ) |
| 16 | 14 | fvoveq1d | ⊢ ( 𝑘 = 𝑗 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) ) |
| 17 | 16 | breq1d | ⊢ ( 𝑘 = 𝑗 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ↔ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ) |
| 19 | 18 | rspcv | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ) |
| 20 | 13 19 | syl | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ) |
| 21 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 22 | 21 | ad2antlr | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑥 ∈ ℝ ) |
| 23 | simpllr | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝐹 ⇝ 𝑦 ) | |
| 24 | climcl | ⊢ ( 𝐹 ⇝ 𝑦 → 𝑦 ∈ ℂ ) | |
| 25 | 23 24 | syl | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → 𝑦 ∈ ℂ ) |
| 26 | simprl | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) | |
| 27 | simplrl | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) | |
| 28 | simpllr | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → 𝑦 ∈ ℂ ) | |
| 29 | simplll | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → 𝑥 ∈ ℝ ) | |
| 30 | simprr | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) | |
| 31 | 28 27 | abssubd | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( 𝑦 − ( 𝐹 ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) ) |
| 32 | simplrr | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) | |
| 33 | 31 32 | eqbrtrd | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( 𝑦 − ( 𝐹 ‘ 𝑗 ) ) ) < ( 𝑥 / 2 ) ) |
| 34 | 26 27 28 29 30 33 | abs3lemd | ⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 35 | 34 | ex | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 36 | 35 | ralimdv | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) ∧ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 37 | 36 | ex | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 38 | 37 | com23 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℂ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 39 | 22 25 38 | syl2anc | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑗 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 40 | 20 39 | mpdd | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 41 | 40 | reximdva | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝑦 ) ) < ( 𝑥 / 2 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 42 | 8 41 | mpd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 43 | 42 | ralrimiva | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ⇝ 𝑦 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |
| 44 | 43 | ex | ⊢ ( 𝑀 ∈ ℤ → ( 𝐹 ⇝ 𝑦 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 45 | 2 44 | biimtrrid | ⊢ ( 𝑀 ∈ ℤ → ( 〈 𝐹 , 𝑦 〉 ∈ ⇝ → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 46 | 45 | exlimdv | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ⇝ → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 47 | eldm2g | ⊢ ( 𝐹 ∈ dom ⇝ → ( 𝐹 ∈ dom ⇝ ↔ ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ⇝ ) ) | |
| 48 | 47 | ibi | ⊢ ( 𝐹 ∈ dom ⇝ → ∃ 𝑦 〈 𝐹 , 𝑦 〉 ∈ ⇝ ) |
| 49 | 46 48 | impel | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) |