This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Weierstrass M-test. If F is a sequence of functions which are uniformly bounded by the convergent sequence M ( k ) , then the series generated by the sequence F converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mtest.z | |- Z = ( ZZ>= ` N ) |
|
| mtest.n | |- ( ph -> N e. ZZ ) |
||
| mtest.s | |- ( ph -> S e. V ) |
||
| mtest.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
||
| mtest.m | |- ( ph -> M e. W ) |
||
| mtest.c | |- ( ( ph /\ k e. Z ) -> ( M ` k ) e. RR ) |
||
| mtest.l | |- ( ( ph /\ ( k e. Z /\ z e. S ) ) -> ( abs ` ( ( F ` k ) ` z ) ) <_ ( M ` k ) ) |
||
| mtest.d | |- ( ph -> seq N ( + , M ) e. dom ~~> ) |
||
| Assertion | mtest | |- ( ph -> seq N ( oF + , F ) e. dom ( ~~>u ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtest.z | |- Z = ( ZZ>= ` N ) |
|
| 2 | mtest.n | |- ( ph -> N e. ZZ ) |
|
| 3 | mtest.s | |- ( ph -> S e. V ) |
|
| 4 | mtest.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
|
| 5 | mtest.m | |- ( ph -> M e. W ) |
|
| 6 | mtest.c | |- ( ( ph /\ k e. Z ) -> ( M ` k ) e. RR ) |
|
| 7 | mtest.l | |- ( ( ph /\ ( k e. Z /\ z e. S ) ) -> ( abs ` ( ( F ` k ) ` z ) ) <_ ( M ` k ) ) |
|
| 8 | mtest.d | |- ( ph -> seq N ( + , M ) e. dom ~~> ) |
|
| 9 | 1 | climcau | |- ( ( N e. ZZ /\ seq N ( + , M ) e. dom ~~> ) -> A. r e. RR+ E. j e. Z A. i e. ( ZZ>= ` j ) ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r ) |
| 10 | 2 8 9 | syl2anc | |- ( ph -> A. r e. RR+ E. j e. Z A. i e. ( ZZ>= ` j ) ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r ) |
| 11 | seqfn | |- ( N e. ZZ -> seq N ( oF + , F ) Fn ( ZZ>= ` N ) ) |
|
| 12 | 2 11 | syl | |- ( ph -> seq N ( oF + , F ) Fn ( ZZ>= ` N ) ) |
| 13 | 1 | fneq2i | |- ( seq N ( oF + , F ) Fn Z <-> seq N ( oF + , F ) Fn ( ZZ>= ` N ) ) |
| 14 | 12 13 | sylibr | |- ( ph -> seq N ( oF + , F ) Fn Z ) |
| 15 | 3 | elexd | |- ( ph -> S e. _V ) |
| 16 | 15 | adantr | |- ( ( ph /\ i e. Z ) -> S e. _V ) |
| 17 | simpr | |- ( ( ph /\ i e. Z ) -> i e. Z ) |
|
| 18 | 17 1 | eleqtrdi | |- ( ( ph /\ i e. Z ) -> i e. ( ZZ>= ` N ) ) |
| 19 | 4 | adantr | |- ( ( ph /\ i e. Z ) -> F : Z --> ( CC ^m S ) ) |
| 20 | elfzuz | |- ( k e. ( N ... i ) -> k e. ( ZZ>= ` N ) ) |
|
| 21 | 20 1 | eleqtrrdi | |- ( k e. ( N ... i ) -> k e. Z ) |
| 22 | ffvelcdm | |- ( ( F : Z --> ( CC ^m S ) /\ k e. Z ) -> ( F ` k ) e. ( CC ^m S ) ) |
|
| 23 | 19 21 22 | syl2an | |- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> ( F ` k ) e. ( CC ^m S ) ) |
| 24 | elmapi | |- ( ( F ` k ) e. ( CC ^m S ) -> ( F ` k ) : S --> CC ) |
|
| 25 | 23 24 | syl | |- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> ( F ` k ) : S --> CC ) |
| 26 | 25 | feqmptd | |- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> ( F ` k ) = ( z e. S |-> ( ( F ` k ) ` z ) ) ) |
| 27 | 21 | adantl | |- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> k e. Z ) |
| 28 | fveq2 | |- ( n = k -> ( F ` n ) = ( F ` k ) ) |
|
| 29 | 28 | fveq1d | |- ( n = k -> ( ( F ` n ) ` z ) = ( ( F ` k ) ` z ) ) |
| 30 | eqid | |- ( n e. Z |-> ( ( F ` n ) ` z ) ) = ( n e. Z |-> ( ( F ` n ) ` z ) ) |
|
| 31 | fvex | |- ( ( F ` k ) ` z ) e. _V |
|
| 32 | 29 30 31 | fvmpt | |- ( k e. Z -> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` k ) = ( ( F ` k ) ` z ) ) |
| 33 | 27 32 | syl | |- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` k ) = ( ( F ` k ) ` z ) ) |
| 34 | 33 | mpteq2dv | |- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> ( z e. S |-> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` k ) ) = ( z e. S |-> ( ( F ` k ) ` z ) ) ) |
| 35 | 26 34 | eqtr4d | |- ( ( ( ph /\ i e. Z ) /\ k e. ( N ... i ) ) -> ( F ` k ) = ( z e. S |-> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` k ) ) ) |
| 36 | 16 18 35 | seqof | |- ( ( ph /\ i e. Z ) -> ( seq N ( oF + , F ) ` i ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ) |
| 37 | 2 | adantr | |- ( ( ph /\ z e. S ) -> N e. ZZ ) |
| 38 | 4 | ffvelcdmda | |- ( ( ph /\ n e. Z ) -> ( F ` n ) e. ( CC ^m S ) ) |
| 39 | elmapi | |- ( ( F ` n ) e. ( CC ^m S ) -> ( F ` n ) : S --> CC ) |
|
| 40 | 38 39 | syl | |- ( ( ph /\ n e. Z ) -> ( F ` n ) : S --> CC ) |
| 41 | 40 | ffvelcdmda | |- ( ( ( ph /\ n e. Z ) /\ z e. S ) -> ( ( F ` n ) ` z ) e. CC ) |
| 42 | 41 | an32s | |- ( ( ( ph /\ z e. S ) /\ n e. Z ) -> ( ( F ` n ) ` z ) e. CC ) |
| 43 | 42 | fmpttd | |- ( ( ph /\ z e. S ) -> ( n e. Z |-> ( ( F ` n ) ` z ) ) : Z --> CC ) |
| 44 | 43 | ffvelcdmda | |- ( ( ( ph /\ z e. S ) /\ i e. Z ) -> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` i ) e. CC ) |
| 45 | 1 37 44 | serf | |- ( ( ph /\ z e. S ) -> seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) : Z --> CC ) |
| 46 | 45 | ffvelcdmda | |- ( ( ( ph /\ z e. S ) /\ i e. Z ) -> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) e. CC ) |
| 47 | 46 | an32s | |- ( ( ( ph /\ i e. Z ) /\ z e. S ) -> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) e. CC ) |
| 48 | 47 | fmpttd | |- ( ( ph /\ i e. Z ) -> ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) : S --> CC ) |
| 49 | cnex | |- CC e. _V |
|
| 50 | elmapg | |- ( ( CC e. _V /\ S e. _V ) -> ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) e. ( CC ^m S ) <-> ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) : S --> CC ) ) |
|
| 51 | 49 16 50 | sylancr | |- ( ( ph /\ i e. Z ) -> ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) e. ( CC ^m S ) <-> ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) : S --> CC ) ) |
| 52 | 48 51 | mpbird | |- ( ( ph /\ i e. Z ) -> ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) e. ( CC ^m S ) ) |
| 53 | 36 52 | eqeltrd | |- ( ( ph /\ i e. Z ) -> ( seq N ( oF + , F ) ` i ) e. ( CC ^m S ) ) |
| 54 | 53 | ralrimiva | |- ( ph -> A. i e. Z ( seq N ( oF + , F ) ` i ) e. ( CC ^m S ) ) |
| 55 | ffnfv | |- ( seq N ( oF + , F ) : Z --> ( CC ^m S ) <-> ( seq N ( oF + , F ) Fn Z /\ A. i e. Z ( seq N ( oF + , F ) ` i ) e. ( CC ^m S ) ) ) |
|
| 56 | 14 54 55 | sylanbrc | |- ( ph -> seq N ( oF + , F ) : Z --> ( CC ^m S ) ) |
| 57 | 56 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> seq N ( oF + , F ) : Z --> ( CC ^m S ) ) |
| 58 | 1 | uztrn2 | |- ( ( j e. Z /\ i e. ( ZZ>= ` j ) ) -> i e. Z ) |
| 59 | 58 | adantl | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> i e. Z ) |
| 60 | 57 59 | ffvelcdmd | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` i ) e. ( CC ^m S ) ) |
| 61 | elmapi | |- ( ( seq N ( oF + , F ) ` i ) e. ( CC ^m S ) -> ( seq N ( oF + , F ) ` i ) : S --> CC ) |
|
| 62 | 60 61 | syl | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` i ) : S --> CC ) |
| 63 | 62 | ffvelcdmda | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( seq N ( oF + , F ) ` i ) ` z ) e. CC ) |
| 64 | simprl | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> j e. Z ) |
|
| 65 | 57 64 | ffvelcdmd | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` j ) e. ( CC ^m S ) ) |
| 66 | elmapi | |- ( ( seq N ( oF + , F ) ` j ) e. ( CC ^m S ) -> ( seq N ( oF + , F ) ` j ) : S --> CC ) |
|
| 67 | 65 66 | syl | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` j ) : S --> CC ) |
| 68 | 67 | ffvelcdmda | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( seq N ( oF + , F ) ` j ) ` z ) e. CC ) |
| 69 | 63 68 | subcld | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) e. CC ) |
| 70 | 69 | abscld | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) e. RR ) |
| 71 | fzfid | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( j + 1 ) ... i ) e. Fin ) |
|
| 72 | ssun2 | |- ( ( j + 1 ) ... i ) C_ ( ( N ... j ) u. ( ( j + 1 ) ... i ) ) |
|
| 73 | 64 1 | eleqtrdi | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> j e. ( ZZ>= ` N ) ) |
| 74 | simprr | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> i e. ( ZZ>= ` j ) ) |
|
| 75 | elfzuzb | |- ( j e. ( N ... i ) <-> ( j e. ( ZZ>= ` N ) /\ i e. ( ZZ>= ` j ) ) ) |
|
| 76 | 73 74 75 | sylanbrc | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> j e. ( N ... i ) ) |
| 77 | fzsplit | |- ( j e. ( N ... i ) -> ( N ... i ) = ( ( N ... j ) u. ( ( j + 1 ) ... i ) ) ) |
|
| 78 | 76 77 | syl | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( N ... i ) = ( ( N ... j ) u. ( ( j + 1 ) ... i ) ) ) |
| 79 | 72 78 | sseqtrrid | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( j + 1 ) ... i ) C_ ( N ... i ) ) |
| 80 | 79 | sselda | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( ( j + 1 ) ... i ) ) -> k e. ( N ... i ) ) |
| 81 | 80 | adantlr | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> k e. ( N ... i ) ) |
| 82 | 4 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> F : Z --> ( CC ^m S ) ) |
| 83 | 82 21 22 | syl2an | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... i ) ) -> ( F ` k ) e. ( CC ^m S ) ) |
| 84 | 83 24 | syl | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... i ) ) -> ( F ` k ) : S --> CC ) |
| 85 | 84 | ffvelcdmda | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... i ) ) /\ z e. S ) -> ( ( F ` k ) ` z ) e. CC ) |
| 86 | 85 | an32s | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( N ... i ) ) -> ( ( F ` k ) ` z ) e. CC ) |
| 87 | 81 86 | syldan | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> ( ( F ` k ) ` z ) e. CC ) |
| 88 | 87 | abscld | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> ( abs ` ( ( F ` k ) ` z ) ) e. RR ) |
| 89 | 71 88 | fsumrecl | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( ( j + 1 ) ... i ) ( abs ` ( ( F ` k ) ` z ) ) e. RR ) |
| 90 | 1 2 6 | serfre | |- ( ph -> seq N ( + , M ) : Z --> RR ) |
| 91 | 90 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> seq N ( + , M ) : Z --> RR ) |
| 92 | 91 59 | ffvelcdmd | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( + , M ) ` i ) e. RR ) |
| 93 | 91 64 | ffvelcdmd | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( + , M ) ` j ) e. RR ) |
| 94 | 92 93 | resubcld | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) e. RR ) |
| 95 | 94 | recnd | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) e. CC ) |
| 96 | 95 | abscld | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) e. RR ) |
| 97 | 96 | adantr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) e. RR ) |
| 98 | 58 36 | sylan2 | |- ( ( ph /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` i ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ) |
| 99 | 98 | adantlr | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` i ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ) |
| 100 | 99 | fveq1d | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( seq N ( oF + , F ) ` i ) ` z ) = ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ` z ) ) |
| 101 | fvex | |- ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) e. _V |
|
| 102 | eqid | |- ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) |
|
| 103 | 102 | fvmpt2 | |- ( ( z e. S /\ ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) e. _V ) -> ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) |
| 104 | 101 103 | mpan2 | |- ( z e. S -> ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) |
| 105 | 100 104 | sylan9eq | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( seq N ( oF + , F ) ` i ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) |
| 106 | fveq2 | |- ( i = j -> ( seq N ( oF + , F ) ` i ) = ( seq N ( oF + , F ) ` j ) ) |
|
| 107 | fveq2 | |- ( i = j -> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) |
|
| 108 | 107 | mpteq2dv | |- ( i = j -> ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ) |
| 109 | 106 108 | eqeq12d | |- ( i = j -> ( ( seq N ( oF + , F ) ` i ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) <-> ( seq N ( oF + , F ) ` j ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ) ) |
| 110 | 36 | ralrimiva | |- ( ph -> A. i e. Z ( seq N ( oF + , F ) ` i ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ) |
| 111 | 110 | ad2antrr | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> A. i e. Z ( seq N ( oF + , F ) ` i ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) ) |
| 112 | 109 111 64 | rspcdva | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( seq N ( oF + , F ) ` j ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ) |
| 113 | 112 | fveq1d | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( seq N ( oF + , F ) ` j ) ` z ) = ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ` z ) ) |
| 114 | fvex | |- ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) e. _V |
|
| 115 | eqid | |- ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) = ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) |
|
| 116 | 115 | fvmpt2 | |- ( ( z e. S /\ ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) e. _V ) -> ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) |
| 117 | 114 116 | mpan2 | |- ( z e. S -> ( ( z e. S |-> ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) |
| 118 | 113 117 | sylan9eq | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( seq N ( oF + , F ) ` j ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) |
| 119 | 105 118 | oveq12d | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) = ( ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) - ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ) |
| 120 | 21 | adantl | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( N ... i ) ) -> k e. Z ) |
| 121 | 120 32 | syl | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( N ... i ) ) -> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` k ) = ( ( F ` k ) ` z ) ) |
| 122 | 59 | adantr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> i e. Z ) |
| 123 | 122 1 | eleqtrdi | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> i e. ( ZZ>= ` N ) ) |
| 124 | 121 123 86 | fsumser | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( N ... i ) ( ( F ` k ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) ) |
| 125 | elfzuz | |- ( k e. ( N ... j ) -> k e. ( ZZ>= ` N ) ) |
|
| 126 | 125 1 | eleqtrrdi | |- ( k e. ( N ... j ) -> k e. Z ) |
| 127 | 126 | adantl | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( N ... j ) ) -> k e. Z ) |
| 128 | 127 32 | syl | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( N ... j ) ) -> ( ( n e. Z |-> ( ( F ` n ) ` z ) ) ` k ) = ( ( F ` k ) ` z ) ) |
| 129 | 64 | adantr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> j e. Z ) |
| 130 | 129 1 | eleqtrdi | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> j e. ( ZZ>= ` N ) ) |
| 131 | 82 126 22 | syl2an | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... j ) ) -> ( F ` k ) e. ( CC ^m S ) ) |
| 132 | 131 24 | syl | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... j ) ) -> ( F ` k ) : S --> CC ) |
| 133 | 132 | ffvelcdmda | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... j ) ) /\ z e. S ) -> ( ( F ` k ) ` z ) e. CC ) |
| 134 | 133 | an32s | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( N ... j ) ) -> ( ( F ` k ) ` z ) e. CC ) |
| 135 | 128 130 134 | fsumser | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( N ... j ) ( ( F ` k ) ` z ) = ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) |
| 136 | 124 135 | oveq12d | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( sum_ k e. ( N ... i ) ( ( F ` k ) ` z ) - sum_ k e. ( N ... j ) ( ( F ` k ) ` z ) ) = ( ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` i ) - ( seq N ( + , ( n e. Z |-> ( ( F ` n ) ` z ) ) ) ` j ) ) ) |
| 137 | fzfid | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( N ... j ) e. Fin ) |
|
| 138 | 137 134 | fsumcl | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( N ... j ) ( ( F ` k ) ` z ) e. CC ) |
| 139 | 71 87 | fsumcl | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( ( j + 1 ) ... i ) ( ( F ` k ) ` z ) e. CC ) |
| 140 | eluzelre | |- ( j e. ( ZZ>= ` N ) -> j e. RR ) |
|
| 141 | 73 140 | syl | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> j e. RR ) |
| 142 | 141 | ltp1d | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> j < ( j + 1 ) ) |
| 143 | fzdisj | |- ( j < ( j + 1 ) -> ( ( N ... j ) i^i ( ( j + 1 ) ... i ) ) = (/) ) |
|
| 144 | 142 143 | syl | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( N ... j ) i^i ( ( j + 1 ) ... i ) ) = (/) ) |
| 145 | 144 | adantr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( N ... j ) i^i ( ( j + 1 ) ... i ) ) = (/) ) |
| 146 | 78 | adantr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( N ... i ) = ( ( N ... j ) u. ( ( j + 1 ) ... i ) ) ) |
| 147 | fzfid | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( N ... i ) e. Fin ) |
|
| 148 | 145 146 147 86 | fsumsplit | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( N ... i ) ( ( F ` k ) ` z ) = ( sum_ k e. ( N ... j ) ( ( F ` k ) ` z ) + sum_ k e. ( ( j + 1 ) ... i ) ( ( F ` k ) ` z ) ) ) |
| 149 | 138 139 148 | mvrladdd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( sum_ k e. ( N ... i ) ( ( F ` k ) ` z ) - sum_ k e. ( N ... j ) ( ( F ` k ) ` z ) ) = sum_ k e. ( ( j + 1 ) ... i ) ( ( F ` k ) ` z ) ) |
| 150 | 119 136 149 | 3eqtr2d | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) = sum_ k e. ( ( j + 1 ) ... i ) ( ( F ` k ) ` z ) ) |
| 151 | 150 | fveq2d | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) = ( abs ` sum_ k e. ( ( j + 1 ) ... i ) ( ( F ` k ) ` z ) ) ) |
| 152 | 71 87 | fsumabs | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` sum_ k e. ( ( j + 1 ) ... i ) ( ( F ` k ) ` z ) ) <_ sum_ k e. ( ( j + 1 ) ... i ) ( abs ` ( ( F ` k ) ` z ) ) ) |
| 153 | 151 152 | eqbrtrd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) <_ sum_ k e. ( ( j + 1 ) ... i ) ( abs ` ( ( F ` k ) ` z ) ) ) |
| 154 | simpll | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ph ) |
|
| 155 | 154 21 6 | syl2an | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... i ) ) -> ( M ` k ) e. RR ) |
| 156 | 80 155 | syldan | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( ( j + 1 ) ... i ) ) -> ( M ` k ) e. RR ) |
| 157 | 156 | adantlr | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> ( M ` k ) e. RR ) |
| 158 | 81 21 | syl | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> k e. Z ) |
| 159 | 7 | ad4ant14 | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ ( k e. Z /\ z e. S ) ) -> ( abs ` ( ( F ` k ) ` z ) ) <_ ( M ` k ) ) |
| 160 | 159 | anass1rs | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. Z ) -> ( abs ` ( ( F ` k ) ` z ) ) <_ ( M ` k ) ) |
| 161 | 158 160 | syldan | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> ( abs ` ( ( F ` k ) ` z ) ) <_ ( M ` k ) ) |
| 162 | 71 88 157 161 | fsumle | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( ( j + 1 ) ... i ) ( abs ` ( ( F ` k ) ` z ) ) <_ sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) |
| 163 | eqidd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... i ) ) -> ( M ` k ) = ( M ` k ) ) |
|
| 164 | 59 1 | eleqtrdi | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> i e. ( ZZ>= ` N ) ) |
| 165 | 155 | recnd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... i ) ) -> ( M ` k ) e. CC ) |
| 166 | 163 164 165 | fsumser | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( N ... i ) ( M ` k ) = ( seq N ( + , M ) ` i ) ) |
| 167 | eqidd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... j ) ) -> ( M ` k ) = ( M ` k ) ) |
|
| 168 | 154 126 6 | syl2an | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... j ) ) -> ( M ` k ) e. RR ) |
| 169 | 168 | recnd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( N ... j ) ) -> ( M ` k ) e. CC ) |
| 170 | 167 73 169 | fsumser | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( N ... j ) ( M ` k ) = ( seq N ( + , M ) ` j ) ) |
| 171 | 166 170 | oveq12d | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( sum_ k e. ( N ... i ) ( M ` k ) - sum_ k e. ( N ... j ) ( M ` k ) ) = ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) |
| 172 | fzfid | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( N ... j ) e. Fin ) |
|
| 173 | 172 169 | fsumcl | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( N ... j ) ( M ` k ) e. CC ) |
| 174 | fzfid | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( j + 1 ) ... i ) e. Fin ) |
|
| 175 | 80 165 | syldan | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ k e. ( ( j + 1 ) ... i ) ) -> ( M ` k ) e. CC ) |
| 176 | 174 175 | fsumcl | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) e. CC ) |
| 177 | fzfid | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( N ... i ) e. Fin ) |
|
| 178 | 144 78 177 165 | fsumsplit | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( N ... i ) ( M ` k ) = ( sum_ k e. ( N ... j ) ( M ` k ) + sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) ) |
| 179 | 173 176 178 | mvrladdd | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( sum_ k e. ( N ... i ) ( M ` k ) - sum_ k e. ( N ... j ) ( M ` k ) ) = sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) |
| 180 | 171 179 | eqtr3d | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) = sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) |
| 181 | 180 | fveq2d | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) = ( abs ` sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) ) |
| 182 | 181 | adantr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) = ( abs ` sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) ) |
| 183 | 180 94 | eqeltrrd | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) e. RR ) |
| 184 | 183 | adantr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) e. RR ) |
| 185 | 0red | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> 0 e. RR ) |
|
| 186 | 87 | absge0d | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> 0 <_ ( abs ` ( ( F ` k ) ` z ) ) ) |
| 187 | 185 88 157 186 161 | letrd | |- ( ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) /\ k e. ( ( j + 1 ) ... i ) ) -> 0 <_ ( M ` k ) ) |
| 188 | 71 157 187 | fsumge0 | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> 0 <_ sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) |
| 189 | 184 188 | absidd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) = sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) |
| 190 | 182 189 | eqtrd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) = sum_ k e. ( ( j + 1 ) ... i ) ( M ` k ) ) |
| 191 | 162 190 | breqtrrd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> sum_ k e. ( ( j + 1 ) ... i ) ( abs ` ( ( F ` k ) ` z ) ) <_ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) ) |
| 192 | 70 89 97 153 191 | letrd | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) <_ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) ) |
| 193 | simpllr | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> r e. RR+ ) |
|
| 194 | 193 | rpred | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> r e. RR ) |
| 195 | lelttr | |- ( ( ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) e. RR /\ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) e. RR /\ r e. RR ) -> ( ( ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) <_ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) /\ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r ) -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
|
| 196 | 70 97 194 195 | syl3anc | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) <_ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) /\ ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r ) -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
| 197 | 192 196 | mpand | |- ( ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) /\ z e. S ) -> ( ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r -> ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
| 198 | 197 | ralrimdva | |- ( ( ( ph /\ r e. RR+ ) /\ ( j e. Z /\ i e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r -> A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
| 199 | 198 | anassrs | |- ( ( ( ( ph /\ r e. RR+ ) /\ j e. Z ) /\ i e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r -> A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
| 200 | 199 | ralimdva | |- ( ( ( ph /\ r e. RR+ ) /\ j e. Z ) -> ( A. i e. ( ZZ>= ` j ) ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r -> A. i e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
| 201 | 200 | reximdva | |- ( ( ph /\ r e. RR+ ) -> ( E. j e. Z A. i e. ( ZZ>= ` j ) ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r -> E. j e. Z A. i e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
| 202 | 201 | ralimdva | |- ( ph -> ( A. r e. RR+ E. j e. Z A. i e. ( ZZ>= ` j ) ( abs ` ( ( seq N ( + , M ) ` i ) - ( seq N ( + , M ) ` j ) ) ) < r -> A. r e. RR+ E. j e. Z A. i e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
| 203 | 10 202 | mpd | |- ( ph -> A. r e. RR+ E. j e. Z A. i e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) |
| 204 | 1 2 3 56 | ulmcau | |- ( ph -> ( seq N ( oF + , F ) e. dom ( ~~>u ` S ) <-> A. r e. RR+ E. j e. Z A. i e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( seq N ( oF + , F ) ` i ) ` z ) - ( ( seq N ( oF + , F ) ` j ) ` z ) ) ) < r ) ) |
| 205 | 203 204 | mpbird | |- ( ph -> seq N ( oF + , F ) e. dom ( ~~>u ` S ) ) |