This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mtest.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) | |
| mtest.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| mtest.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| mtest.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | ||
| mtest.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) | ||
| mtest.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) | ||
| mtest.l | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) | ||
| mtest.d | ⊢ ( 𝜑 → seq 𝑁 ( + , 𝑀 ) ∈ dom ⇝ ) | ||
| mtest.t | ⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) ( ⇝𝑢 ‘ 𝑆 ) 𝑇 ) | ||
| Assertion | mtestbdd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtest.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) | |
| 2 | mtest.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 3 | mtest.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | mtest.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 5 | mtest.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) | |
| 6 | mtest.c | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) | |
| 7 | mtest.l | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) | |
| 8 | mtest.d | ⊢ ( 𝜑 → seq 𝑁 ( + , 𝑀 ) ∈ dom ⇝ ) | |
| 9 | mtest.t | ⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) ( ⇝𝑢 ‘ 𝑆 ) 𝑇 ) | |
| 10 | 6 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
| 11 | 1 2 10 | serf | ⊢ ( 𝜑 → seq 𝑁 ( + , 𝑀 ) : 𝑍 ⟶ ℂ ) |
| 12 | 11 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ∈ ℂ ) |
| 13 | 12 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ∈ ℂ ) |
| 14 | 1 | climbdd | ⊢ ( ( 𝑁 ∈ ℤ ∧ seq 𝑁 ( + , 𝑀 ) ∈ dom ⇝ ∧ ∀ 𝑚 ∈ 𝑍 ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ∈ ℂ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) |
| 15 | 2 8 13 14 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) |
| 16 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) → 𝑁 ∈ ℤ ) |
| 17 | seqfn | ⊢ ( 𝑁 ∈ ℤ → seq 𝑁 ( ∘f + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑁 ) ) | |
| 18 | 2 17 | syl | ⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
| 19 | 1 | fneq2i | ⊢ ( seq 𝑁 ( ∘f + , 𝐹 ) Fn 𝑍 ↔ seq 𝑁 ( ∘f + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑁 ) ) |
| 20 | 18 19 | sylibr | ⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) Fn 𝑍 ) |
| 21 | ulmf2 | ⊢ ( ( seq 𝑁 ( ∘f + , 𝐹 ) Fn 𝑍 ∧ seq 𝑁 ( ∘f + , 𝐹 ) ( ⇝𝑢 ‘ 𝑆 ) 𝑇 ) → seq 𝑁 ( ∘f + , 𝐹 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 22 | 20 9 21 | syl2anc | ⊢ ( 𝜑 → seq 𝑁 ( ∘f + , 𝐹 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) → seq 𝑁 ( ∘f + , 𝐹 ) : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 24 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑦 ∈ ℝ ) | |
| 25 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) | |
| 26 | 25 | mpteq2dv | ⊢ ( 𝑥 = 𝑧 → ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) = ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) |
| 27 | 26 | seqeq3d | ⊢ ( 𝑥 = 𝑧 → seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) = seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ) |
| 28 | 27 | fveq1d | ⊢ ( 𝑥 = 𝑧 → ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) = ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ‘ 𝑛 ) ) |
| 29 | eqid | ⊢ ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) | |
| 30 | fvex | ⊢ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ‘ 𝑛 ) ∈ V | |
| 31 | 28 29 30 | fvmpt | ⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ‘ 𝑛 ) ) |
| 32 | 31 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ‘ 𝑛 ) ) |
| 33 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 34 | 33 | feqmptd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝐹 = ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) ) |
| 35 | 33 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 36 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) | |
| 37 | 35 36 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) : 𝑆 ⟶ ℂ ) |
| 38 | 37 | feqmptd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) |
| 39 | 38 | mpteq2dva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑗 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑗 ) ) = ( 𝑗 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) |
| 40 | 34 39 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝐹 = ( 𝑗 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) |
| 41 | 40 | seqeq3d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → seq 𝑁 ( ∘f + , 𝐹 ) = seq 𝑁 ( ∘f + , ( 𝑗 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) ) |
| 42 | 41 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑁 ( ∘f + , ( 𝑗 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) ‘ 𝑛 ) ) |
| 43 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑆 ∈ 𝑉 ) |
| 44 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑛 ∈ 𝑍 ) | |
| 45 | 44 1 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 46 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 47 | 46 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑁 ... 𝑛 ) → 𝑘 ∈ 𝑍 ) |
| 48 | 47 | ssriv | ⊢ ( 𝑁 ... 𝑛 ) ⊆ 𝑍 |
| 49 | 48 | a1i | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑁 ... 𝑛 ) ⊆ 𝑍 ) |
| 50 | 37 | ffvelcdmda | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℂ ) |
| 51 | 50 | anasss | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ∈ ℂ ) |
| 52 | 43 45 49 51 | seqof2 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( seq 𝑁 ( ∘f + , ( 𝑗 ∈ 𝑍 ↦ ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) ) |
| 53 | 42 52 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) ) |
| 54 | 53 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝑆 ↦ ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑥 ) ) ) ‘ 𝑛 ) ) ‘ 𝑧 ) ) |
| 55 | 47 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → 𝑘 ∈ 𝑍 ) |
| 56 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 57 | 56 | fveq1d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 58 | eqid | ⊢ ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) = ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) | |
| 59 | fvex | ⊢ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ V | |
| 60 | 57 58 59 | fvmpt | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 61 | 55 60 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 62 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑗 ∈ 𝑍 ) → 𝑧 ∈ 𝑆 ) | |
| 63 | 37 62 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ∈ ℂ ) |
| 64 | 63 | fmpttd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) : 𝑍 ⟶ ℂ ) |
| 65 | 64 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 66 | 47 65 | sylan2 | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 67 | 61 66 | eqeltrrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 68 | 61 45 67 | fsumser | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( seq 𝑁 ( + , ( 𝑗 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑗 ) ‘ 𝑧 ) ) ) ‘ 𝑛 ) ) |
| 69 | 32 54 68 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) = Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) |
| 70 | 69 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) ) = ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 71 | fzfid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑁 ... 𝑛 ) ∈ Fin ) | |
| 72 | 71 67 | fsumcl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 73 | 72 | abscld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ ℝ ) |
| 74 | 67 | abscld | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ ℝ ) |
| 75 | 71 74 | fsumrecl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ ℝ ) |
| 76 | 24 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ ℝ ) |
| 77 | 71 67 | fsumabs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 78 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → 𝜑 ) | |
| 79 | 78 55 6 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
| 80 | 71 79 | fsumrecl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ∈ ℝ ) |
| 81 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → 𝑧 ∈ 𝑆 ) | |
| 82 | 78 55 81 7 | syl12anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ ( 𝑀 ‘ 𝑘 ) ) |
| 83 | 71 74 79 82 | fsumle | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ) |
| 84 | 80 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
| 85 | 84 | abscld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ ) |
| 86 | 80 | leabsd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ≤ ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ) ) |
| 87 | eqidd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( 𝑀 ‘ 𝑘 ) = ( 𝑀 ‘ 𝑘 ) ) | |
| 88 | 78 55 10 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ℂ ) |
| 89 | 87 45 88 | fsumser | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) = ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) |
| 90 | 89 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ) = ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) ) |
| 91 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) → ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) | |
| 92 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) = ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) | |
| 93 | 92 | fveq2d | ⊢ ( 𝑚 = 𝑛 → ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) = ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) ) |
| 94 | 93 | breq1d | ⊢ ( 𝑚 = 𝑛 → ( ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ↔ ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) ≤ 𝑦 ) ) |
| 95 | 94 | rspccva | ⊢ ( ( ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ∧ 𝑛 ∈ 𝑍 ) → ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) ≤ 𝑦 ) |
| 96 | 91 95 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) → ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) ≤ 𝑦 ) |
| 97 | 96 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑛 ) ) ≤ 𝑦 ) |
| 98 | 90 97 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ) ≤ 𝑦 ) |
| 99 | 80 85 76 86 98 | letrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ 𝑘 ) ≤ 𝑦 ) |
| 100 | 75 80 76 83 99 | letrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
| 101 | 73 75 76 77 100 | letrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ Σ 𝑘 ∈ ( 𝑁 ... 𝑛 ) ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
| 102 | 70 101 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑧 ∈ 𝑆 ) → ( abs ‘ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
| 103 | 102 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) ) ≤ 𝑦 ) |
| 104 | brralrspcev | ⊢ ( ( 𝑦 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) ) ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) ) ≤ 𝑥 ) | |
| 105 | 24 103 104 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) ∧ 𝑛 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( seq 𝑁 ( ∘f + , 𝐹 ) ‘ 𝑛 ) ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 106 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) → seq 𝑁 ( ∘f + , 𝐹 ) ( ⇝𝑢 ‘ 𝑆 ) 𝑇 ) |
| 107 | 1 16 23 105 106 | ulmbdd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝑍 ( abs ‘ ( seq 𝑁 ( + , 𝑀 ) ‘ 𝑚 ) ) ≤ 𝑦 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ 𝑥 ) |
| 108 | 15 107 | rexlimddv | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ 𝑥 ) |