This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A division ring can equivalently be defined as a ring such that the nonzero elements form a group under multiplication (from which it follows that this is the same group as the group of units). (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdrng2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isdrng2.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| isdrng2.g | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) | ||
| Assertion | isdrng2 | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrng2.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isdrng2.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | isdrng2.g | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) | |
| 4 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 5 | 1 4 2 | isdrng | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) ) |
| 6 | oveq2 | ⊢ ( ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( 𝐵 ∖ { 0 } ) ) ) |
| 8 | 7 3 | eqtr4di | ⊢ ( ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) = 𝐺 ) |
| 9 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) = ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) | |
| 10 | 4 9 | unitgrp | ⊢ ( 𝑅 ∈ Ring → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ Grp ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) → ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) ∈ Grp ) |
| 12 | 8 11 | eqeltrrd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) → 𝐺 ∈ Grp ) |
| 13 | 1 4 | unitcl | ⊢ ( 𝑥 ∈ ( Unit ‘ 𝑅 ) → 𝑥 ∈ 𝐵 ) |
| 14 | 13 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → 𝑥 ∈ 𝐵 ) |
| 15 | difss | ⊢ ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 | |
| 16 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 17 | 16 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 18 | 3 17 | ressbas2 | ⊢ ( ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 → ( 𝐵 ∖ { 0 } ) = ( Base ‘ 𝐺 ) ) |
| 19 | 15 18 | ax-mp | ⊢ ( 𝐵 ∖ { 0 } ) = ( Base ‘ 𝐺 ) |
| 20 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 21 | 19 20 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → ( 0g ‘ 𝐺 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 23 | eldifsn | ⊢ ( ( 0g ‘ 𝐺 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ ( 0g ‘ 𝐺 ) ≠ 0 ) ) | |
| 24 | 22 23 | sylib | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → ( ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ ( 0g ‘ 𝐺 ) ≠ 0 ) ) |
| 25 | 24 | simprd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → ( 0g ‘ 𝐺 ) ≠ 0 ) |
| 26 | simpll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) | |
| 27 | 22 | eldifad | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 28 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → 𝑥 ∈ ( Unit ‘ 𝑅 ) ) | |
| 29 | eqid | ⊢ ( /r ‘ 𝑅 ) = ( /r ‘ 𝑅 ) | |
| 30 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 31 | 1 4 29 30 | dvrcan1 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 32 | 26 27 28 31 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 33 | 1 4 29 | dvrcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ∈ 𝐵 ) |
| 34 | 26 27 28 33 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ∈ 𝐵 ) |
| 35 | 1 30 2 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ∈ 𝐵 ) → ( ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 36 | 26 34 35 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 37 | 25 32 36 | 3netr4d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ≠ ( ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 0 ) ) |
| 38 | oveq2 | ⊢ ( 𝑥 = 0 → ( ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 0 ) ) | |
| 39 | 38 | necon3i | ⊢ ( ( ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ≠ ( ( ( 0g ‘ 𝐺 ) ( /r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 0 ) → 𝑥 ≠ 0 ) |
| 40 | 37 39 | syl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → 𝑥 ≠ 0 ) |
| 41 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) ) | |
| 42 | 14 40 41 | sylanbrc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) → 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 43 | 42 | ex | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) → ( 𝑥 ∈ ( Unit ‘ 𝑅 ) → 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) ) |
| 44 | 43 | ssrdv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) → ( Unit ‘ 𝑅 ) ⊆ ( 𝐵 ∖ { 0 } ) ) |
| 45 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ∈ 𝐵 ) | |
| 46 | 45 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ∈ 𝐵 ) |
| 47 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 48 | 19 47 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 49 | 48 | adantll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 50 | 49 | eldifad | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 51 | eqid | ⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) | |
| 52 | 1 51 30 | dvdsrmul | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) → 𝑥 ( ∥r ‘ 𝑅 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 53 | 46 50 52 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ( ∥r ‘ 𝑅 ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 54 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 55 | difexg | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∖ { 0 } ) ∈ V ) | |
| 56 | 16 30 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 57 | 3 56 | ressplusg | ⊢ ( ( 𝐵 ∖ { 0 } ) ∈ V → ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) ) |
| 58 | 54 55 57 | mp2b | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) |
| 59 | 19 58 20 47 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 60 | 59 | adantll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 61 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 62 | 1 61 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 63 | 1 30 61 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 64 | 62 63 | mpdan | ⊢ ( 𝑅 ∈ Ring → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 65 | 64 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ) |
| 66 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) → 𝐺 ∈ Grp ) | |
| 67 | 4 61 | 1unit | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 68 | 67 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) → ( 1r ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 69 | 44 68 | sseldd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) → ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 70 | 19 58 20 | grpid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ↔ ( 0g ‘ 𝐺 ) = ( 1r ‘ 𝑅 ) ) ) |
| 71 | 66 69 70 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑅 ) ↔ ( 0g ‘ 𝐺 ) = ( 1r ‘ 𝑅 ) ) ) |
| 72 | 65 71 | mpbid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) → ( 0g ‘ 𝐺 ) = ( 1r ‘ 𝑅 ) ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 0g ‘ 𝐺 ) = ( 1r ‘ 𝑅 ) ) |
| 74 | 60 73 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 75 | 53 74 | breqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 76 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 77 | 76 1 | opprbas | ⊢ 𝐵 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 78 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) | |
| 79 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) | |
| 80 | 77 78 79 | dvdsrmul | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝐵 ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) |
| 81 | 46 50 80 | syl2anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) |
| 82 | 1 30 76 79 | opprmul | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) |
| 83 | 19 58 20 47 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
| 84 | 83 | adantll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝐺 ) ) |
| 85 | 84 73 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 1r ‘ 𝑅 ) ) |
| 86 | 82 85 | eqtrid | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 87 | 81 86 | breqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 88 | 4 61 51 76 78 | isunit | ⊢ ( 𝑥 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 89 | 75 87 88 | sylanbrc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
| 90 | 44 89 | eqelssd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) → ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) |
| 91 | 12 90 | impbida | ⊢ ( 𝑅 ∈ Ring → ( ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ↔ 𝐺 ∈ Grp ) ) |
| 92 | 91 | pm5.32i | ⊢ ( ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) ↔ ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ) |
| 93 | 5 92 | bitri | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ 𝐺 ∈ Grp ) ) |