This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of division operation. (Contributed by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvrcl.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| dvrcl.d | ⊢ / = ( /r ‘ 𝑅 ) | ||
| Assertion | dvrcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvrcl.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | dvrcl.d | ⊢ / = ( /r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 6 | 1 4 2 5 3 | dvrval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 8 | 2 5 1 | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 10 | 1 4 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 11 | 9 10 | syld3an3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 12 | 7 11 | eqeltrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) ∈ 𝐵 ) |