This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinv.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpinv.u | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| grpinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinv.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpinv.u | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | grpinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 5 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 6 | 1 3 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| 7 | 1 2 3 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 8 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 9 | 1 2 3 | grpinvex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑥 ) = 0 ) |
| 10 | simpr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 11 | 1 4 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ) |
| 12 | 1 2 3 4 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
| 13 | 5 6 7 8 9 10 11 12 | grpinva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 𝑁 ‘ 𝑋 ) ) = 0 ) |