This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A left-multiple of X is divisible by X . (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| dvdsr.3 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | dvdsrmul | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∥ ( 𝑌 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | dvdsr.3 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | simpl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 5 | simpr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 6 | eqid | ⊢ ( 𝑌 · 𝑋 ) = ( 𝑌 · 𝑋 ) | |
| 7 | oveq1 | ⊢ ( 𝑧 = 𝑌 → ( 𝑧 · 𝑋 ) = ( 𝑌 · 𝑋 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑧 = 𝑌 → ( ( 𝑧 · 𝑋 ) = ( 𝑌 · 𝑋 ) ↔ ( 𝑌 · 𝑋 ) = ( 𝑌 · 𝑋 ) ) ) |
| 9 | 8 | rspcev | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ ( 𝑌 · 𝑋 ) = ( 𝑌 · 𝑋 ) ) → ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = ( 𝑌 · 𝑋 ) ) |
| 10 | 5 6 9 | sylancl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = ( 𝑌 · 𝑋 ) ) |
| 11 | 1 2 3 | dvdsr | ⊢ ( 𝑋 ∥ ( 𝑌 · 𝑋 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = ( 𝑌 · 𝑋 ) ) ) |
| 12 | 4 10 11 | sylanbrc | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∥ ( 𝑌 · 𝑋 ) ) |