This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that an element of a group is the identity element. Provides a convenient way to compute the value of the identity element. (Contributed by NM, 24-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinveu.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinveu.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpinveu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grpid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 + 𝑋 ) = 𝑋 ↔ 0 = 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinveu.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinveu.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpinveu.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | eqcom | ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
| 5 | 1 3 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| 6 | 1 2 | grprcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑋 ) = ( 0 + 𝑋 ) ↔ 𝑋 = 0 ) ) |
| 7 | 6 | 3exp2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 0 ∈ 𝐵 → ( 𝑋 ∈ 𝐵 → ( ( 𝑋 + 𝑋 ) = ( 0 + 𝑋 ) ↔ 𝑋 = 0 ) ) ) ) ) |
| 8 | 5 7 | mpid | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑋 ∈ 𝐵 → ( ( 𝑋 + 𝑋 ) = ( 0 + 𝑋 ) ↔ 𝑋 = 0 ) ) ) ) |
| 9 | 8 | pm2.43d | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( ( 𝑋 + 𝑋 ) = ( 0 + 𝑋 ) ↔ 𝑋 = 0 ) ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 + 𝑋 ) = ( 0 + 𝑋 ) ↔ 𝑋 = 0 ) ) |
| 11 | 1 2 3 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 + 𝑋 ) = 𝑋 ) |
| 12 | 11 | eqeq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 + 𝑋 ) = ( 0 + 𝑋 ) ↔ ( 𝑋 + 𝑋 ) = 𝑋 ) ) |
| 13 | 10 12 | bitr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 = 0 ↔ ( 𝑋 + 𝑋 ) = 𝑋 ) ) |
| 14 | 4 13 | bitr2id | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 + 𝑋 ) = 𝑋 ↔ 0 = 𝑋 ) ) |