This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unit.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | 1unit | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unit.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 3 2 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 5 | eqid | ⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) | |
| 6 | 3 5 | dvdsrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → 1 ( ∥r ‘ 𝑅 ) 1 ) |
| 7 | 4 6 | mpdan | ⊢ ( 𝑅 ∈ Ring → 1 ( ∥r ‘ 𝑅 ) 1 ) |
| 8 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 9 | 8 | opprring | ⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 10 | 8 3 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 11 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) | |
| 12 | 10 11 | dvdsrid | ⊢ ( ( ( oppr ‘ 𝑅 ) ∈ Ring ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → 1 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) |
| 13 | 9 4 12 | syl2anc | ⊢ ( 𝑅 ∈ Ring → 1 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) |
| 14 | 1 2 5 8 11 | isunit | ⊢ ( 1 ∈ 𝑈 ↔ ( 1 ( ∥r ‘ 𝑅 ) 1 ∧ 1 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) ) |
| 15 | 7 13 14 | sylanbrc | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝑈 ) |