This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A division ring can equivalently be defined as a ring such that the nonzero elements form a group under multiplication (from which it follows that this is the same group as the group of units). (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdrng2.b | |- B = ( Base ` R ) |
|
| isdrng2.z | |- .0. = ( 0g ` R ) |
||
| isdrng2.g | |- G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
||
| Assertion | isdrng2 | |- ( R e. DivRing <-> ( R e. Ring /\ G e. Grp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrng2.b | |- B = ( Base ` R ) |
|
| 2 | isdrng2.z | |- .0. = ( 0g ` R ) |
|
| 3 | isdrng2.g | |- G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
|
| 4 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 5 | 1 4 2 | isdrng | |- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) ) |
| 6 | oveq2 | |- ( ( Unit ` R ) = ( B \ { .0. } ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
|
| 7 | 6 | adantl | |- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
| 8 | 7 3 | eqtr4di | |- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = G ) |
| 9 | eqid | |- ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) |
|
| 10 | 4 9 | unitgrp | |- ( R e. Ring -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp ) |
| 11 | 10 | adantr | |- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp ) |
| 12 | 8 11 | eqeltrrd | |- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> G e. Grp ) |
| 13 | 1 4 | unitcl | |- ( x e. ( Unit ` R ) -> x e. B ) |
| 14 | 13 | adantl | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x e. B ) |
| 15 | difss | |- ( B \ { .0. } ) C_ B |
|
| 16 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 17 | 16 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 18 | 3 17 | ressbas2 | |- ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` G ) ) |
| 19 | 15 18 | ax-mp | |- ( B \ { .0. } ) = ( Base ` G ) |
| 20 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 21 | 19 20 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. ( B \ { .0. } ) ) |
| 22 | 21 | ad2antlr | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( 0g ` G ) e. ( B \ { .0. } ) ) |
| 23 | eldifsn | |- ( ( 0g ` G ) e. ( B \ { .0. } ) <-> ( ( 0g ` G ) e. B /\ ( 0g ` G ) =/= .0. ) ) |
|
| 24 | 22 23 | sylib | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( 0g ` G ) e. B /\ ( 0g ` G ) =/= .0. ) ) |
| 25 | 24 | simprd | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( 0g ` G ) =/= .0. ) |
| 26 | simpll | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> R e. Ring ) |
|
| 27 | 22 | eldifad | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( 0g ` G ) e. B ) |
| 28 | simpr | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x e. ( Unit ` R ) ) |
|
| 29 | eqid | |- ( /r ` R ) = ( /r ` R ) |
|
| 30 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 31 | 1 4 29 30 | dvrcan1 | |- ( ( R e. Ring /\ ( 0g ` G ) e. B /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) = ( 0g ` G ) ) |
| 32 | 26 27 28 31 | syl3anc | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) = ( 0g ` G ) ) |
| 33 | 1 4 29 | dvrcl | |- ( ( R e. Ring /\ ( 0g ` G ) e. B /\ x e. ( Unit ` R ) ) -> ( ( 0g ` G ) ( /r ` R ) x ) e. B ) |
| 34 | 26 27 28 33 | syl3anc | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( 0g ` G ) ( /r ` R ) x ) e. B ) |
| 35 | 1 30 2 | ringrz | |- ( ( R e. Ring /\ ( ( 0g ` G ) ( /r ` R ) x ) e. B ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) = .0. ) |
| 36 | 26 34 35 | syl2anc | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) = .0. ) |
| 37 | 25 32 36 | 3netr4d | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) =/= ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) ) |
| 38 | oveq2 | |- ( x = .0. -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) = ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) ) |
|
| 39 | 38 | necon3i | |- ( ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) =/= ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) -> x =/= .0. ) |
| 40 | 37 39 | syl | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x =/= .0. ) |
| 41 | eldifsn | |- ( x e. ( B \ { .0. } ) <-> ( x e. B /\ x =/= .0. ) ) |
|
| 42 | 14 40 41 | sylanbrc | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x e. ( B \ { .0. } ) ) |
| 43 | 42 | ex | |- ( ( R e. Ring /\ G e. Grp ) -> ( x e. ( Unit ` R ) -> x e. ( B \ { .0. } ) ) ) |
| 44 | 43 | ssrdv | |- ( ( R e. Ring /\ G e. Grp ) -> ( Unit ` R ) C_ ( B \ { .0. } ) ) |
| 45 | eldifi | |- ( x e. ( B \ { .0. } ) -> x e. B ) |
|
| 46 | 45 | adantl | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x e. B ) |
| 47 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 48 | 19 47 | grpinvcl | |- ( ( G e. Grp /\ x e. ( B \ { .0. } ) ) -> ( ( invg ` G ) ` x ) e. ( B \ { .0. } ) ) |
| 49 | 48 | adantll | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( invg ` G ) ` x ) e. ( B \ { .0. } ) ) |
| 50 | 49 | eldifad | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( invg ` G ) ` x ) e. B ) |
| 51 | eqid | |- ( ||r ` R ) = ( ||r ` R ) |
|
| 52 | 1 51 30 | dvdsrmul | |- ( ( x e. B /\ ( ( invg ` G ) ` x ) e. B ) -> x ( ||r ` R ) ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) ) |
| 53 | 46 50 52 | syl2anc | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` R ) ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) ) |
| 54 | 1 | fvexi | |- B e. _V |
| 55 | difexg | |- ( B e. _V -> ( B \ { .0. } ) e. _V ) |
|
| 56 | 16 30 | mgpplusg | |- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 57 | 3 56 | ressplusg | |- ( ( B \ { .0. } ) e. _V -> ( .r ` R ) = ( +g ` G ) ) |
| 58 | 54 55 57 | mp2b | |- ( .r ` R ) = ( +g ` G ) |
| 59 | 19 58 20 47 | grplinv | |- ( ( G e. Grp /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) = ( 0g ` G ) ) |
| 60 | 59 | adantll | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) = ( 0g ` G ) ) |
| 61 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 62 | 1 61 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 63 | 1 30 61 | ringlidm | |- ( ( R e. Ring /\ ( 1r ` R ) e. B ) -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
| 64 | 62 63 | mpdan | |- ( R e. Ring -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
| 65 | 64 | adantr | |- ( ( R e. Ring /\ G e. Grp ) -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
| 66 | simpr | |- ( ( R e. Ring /\ G e. Grp ) -> G e. Grp ) |
|
| 67 | 4 61 | 1unit | |- ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) |
| 68 | 67 | adantr | |- ( ( R e. Ring /\ G e. Grp ) -> ( 1r ` R ) e. ( Unit ` R ) ) |
| 69 | 44 68 | sseldd | |- ( ( R e. Ring /\ G e. Grp ) -> ( 1r ` R ) e. ( B \ { .0. } ) ) |
| 70 | 19 58 20 | grpid | |- ( ( G e. Grp /\ ( 1r ` R ) e. ( B \ { .0. } ) ) -> ( ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) <-> ( 0g ` G ) = ( 1r ` R ) ) ) |
| 71 | 66 69 70 | syl2anc | |- ( ( R e. Ring /\ G e. Grp ) -> ( ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) <-> ( 0g ` G ) = ( 1r ` R ) ) ) |
| 72 | 65 71 | mpbid | |- ( ( R e. Ring /\ G e. Grp ) -> ( 0g ` G ) = ( 1r ` R ) ) |
| 73 | 72 | adantr | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( 0g ` G ) = ( 1r ` R ) ) |
| 74 | 60 73 | eqtrd | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) = ( 1r ` R ) ) |
| 75 | 53 74 | breqtrd | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` R ) ( 1r ` R ) ) |
| 76 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 77 | 76 1 | opprbas | |- B = ( Base ` ( oppR ` R ) ) |
| 78 | eqid | |- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
|
| 79 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 80 | 77 78 79 | dvdsrmul | |- ( ( x e. B /\ ( ( invg ` G ) ` x ) e. B ) -> x ( ||r ` ( oppR ` R ) ) ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) ) |
| 81 | 46 50 80 | syl2anc | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` ( oppR ` R ) ) ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) ) |
| 82 | 1 30 76 79 | opprmul | |- ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) = ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) |
| 83 | 19 58 20 47 | grprinv | |- ( ( G e. Grp /\ x e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) = ( 0g ` G ) ) |
| 84 | 83 | adantll | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) = ( 0g ` G ) ) |
| 85 | 84 73 | eqtrd | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) = ( 1r ` R ) ) |
| 86 | 82 85 | eqtrid | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) |
| 87 | 81 86 | breqtrd | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 88 | 4 61 51 76 78 | isunit | |- ( x e. ( Unit ` R ) <-> ( x ( ||r ` R ) ( 1r ` R ) /\ x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 89 | 75 87 88 | sylanbrc | |- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x e. ( Unit ` R ) ) |
| 90 | 44 89 | eqelssd | |- ( ( R e. Ring /\ G e. Grp ) -> ( Unit ` R ) = ( B \ { .0. } ) ) |
| 91 | 12 90 | impbida | |- ( R e. Ring -> ( ( Unit ` R ) = ( B \ { .0. } ) <-> G e. Grp ) ) |
| 92 | 91 | pm5.32i | |- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) <-> ( R e. Ring /\ G e. Grp ) ) |
| 93 | 5 92 | bitri | |- ( R e. DivRing <-> ( R e. Ring /\ G e. Grp ) ) |