This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitmulcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unitgrp.2 | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | ||
| Assertion | unitgrp | ⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitmulcl.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unitgrp.2 | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | |
| 3 | 1 2 | unitgrpbas | ⊢ 𝑈 = ( Base ‘ 𝐺 ) |
| 4 | 3 | a1i | ⊢ ( 𝑅 ∈ Ring → 𝑈 = ( Base ‘ 𝐺 ) ) |
| 5 | 1 | fvexi | ⊢ 𝑈 ∈ V |
| 6 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 8 | 6 7 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 9 | 2 8 | ressplusg | ⊢ ( 𝑈 ∈ V → ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) ) |
| 10 | 5 9 | mp1i | ⊢ ( 𝑅 ∈ Ring → ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) ) |
| 11 | 1 7 | unitmulcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑈 ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 13 | 12 1 | unitcl | ⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 14 | 12 1 | unitcl | ⊢ ( 𝑦 ∈ 𝑈 → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
| 15 | 12 1 | unitcl | ⊢ ( 𝑧 ∈ 𝑈 → 𝑧 ∈ ( Base ‘ 𝑅 ) ) |
| 16 | 13 14 15 | 3anim123i | ⊢ ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) |
| 17 | 12 7 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑧 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 18 | 16 17 | sylan2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑧 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) ) |
| 19 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 20 | 1 19 | 1unit | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
| 21 | 12 7 19 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 22 | 13 21 | sylan2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
| 23 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) | |
| 24 | eqid | ⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) | |
| 25 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 26 | eqid | ⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) | |
| 27 | 1 19 24 25 26 | isunit | ⊢ ( 𝑥 ∈ 𝑈 ↔ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 28 | 23 27 | sylib | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 29 | 13 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 30 | 12 24 7 | dvdsr2 | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 31 | 29 30 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 32 | 25 12 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 33 | eqid | ⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) | |
| 34 | 32 26 33 | dvdsr2 | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → ( 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ↔ ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 35 | 29 34 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ↔ ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 36 | 31 35 | anbi12d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ↔ ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) |
| 37 | reeanv | ⊢ ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ↔ ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) | |
| 38 | simprl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑚 ∈ ( Base ‘ 𝑅 ) ) | |
| 39 | 29 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 40 | 12 24 7 | dvdsrmul | ⊢ ( ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑚 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) ) |
| 41 | 38 39 40 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑚 ( ∥r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) ) |
| 42 | simplll | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑅 ∈ Ring ) | |
| 43 | simplr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) | |
| 44 | 12 7 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑚 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑚 ) = ( 𝑦 ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) ) ) |
| 45 | 42 43 39 38 44 | syl13anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑚 ) = ( 𝑦 ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) ) ) |
| 46 | simprrl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) | |
| 47 | 46 | oveq1d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) ( .r ‘ 𝑅 ) 𝑚 ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑚 ) ) |
| 48 | 12 7 25 33 | opprmul | ⊢ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) |
| 49 | simprrr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) | |
| 50 | 48 49 | eqtr3id | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) = ( 1r ‘ 𝑅 ) ) |
| 51 | 50 | oveq2d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) 𝑚 ) ) = ( 𝑦 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 52 | 45 47 51 | 3eqtr3d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑚 ) = ( 𝑦 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 53 | 12 7 19 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑚 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑚 ) = 𝑚 ) |
| 54 | 42 38 53 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑚 ) = 𝑚 ) |
| 55 | 12 7 19 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑦 ) |
| 56 | 42 43 55 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑦 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑦 ) |
| 57 | 52 54 56 | 3eqtr3d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑚 = 𝑦 ) |
| 58 | 41 57 50 | 3brtr3d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑦 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 59 | 32 26 33 | dvdsrmul | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑦 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) ) |
| 60 | 43 39 59 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑦 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) ) |
| 61 | 12 7 25 33 | opprmul | ⊢ ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) |
| 62 | 61 46 | eqtrid | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑥 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑦 ) = ( 1r ‘ 𝑅 ) ) |
| 63 | 60 62 | breqtrd | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑦 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 64 | 1 19 24 25 26 | isunit | ⊢ ( 𝑦 ∈ 𝑈 ↔ ( 𝑦 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑦 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 65 | 58 63 64 | sylanbrc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → 𝑦 ∈ 𝑈 ) |
| 66 | 65 46 | jca | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑚 ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) → ( 𝑦 ∈ 𝑈 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 67 | 66 | rexlimdvaa | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) → ( 𝑦 ∈ 𝑈 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) |
| 68 | 67 | expimpd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑦 ∈ ( Base ‘ 𝑅 ) ∧ ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) → ( 𝑦 ∈ 𝑈 ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) ) |
| 69 | 68 | reximdv2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) → ∃ 𝑦 ∈ 𝑈 ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 70 | 37 69 | biimtrrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( ∃ 𝑦 ∈ ( Base ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ∧ ∃ 𝑚 ∈ ( Base ‘ 𝑅 ) ( 𝑚 ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) → ∃ 𝑦 ∈ 𝑈 ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 71 | 36 70 | sylbid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) → ∃ 𝑦 ∈ 𝑈 ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) ) |
| 72 | 28 71 | mpd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ∃ 𝑦 ∈ 𝑈 ( 𝑦 ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 73 | 4 10 11 18 20 22 72 | isgrpde | ⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Grp ) |