This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cancellation law for division. ( divcan1 analog.) (Contributed by Mario Carneiro, 2-Jul-2014) (Revised by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrass.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvrass.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| dvrass.d | ⊢ / = ( /r ‘ 𝑅 ) | ||
| dvrass.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | dvrcan1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 / 𝑌 ) · 𝑌 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrass.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvrass.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | dvrass.d | ⊢ / = ( /r ‘ 𝑅 ) | |
| 4 | dvrass.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 6 | 1 4 2 5 3 | dvrval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 / 𝑌 ) = ( 𝑋 · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) ) |
| 8 | 7 | oveq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 / 𝑌 ) · 𝑌 ) = ( ( 𝑋 · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) · 𝑌 ) ) |
| 9 | simp1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑅 ∈ Ring ) | |
| 10 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝐵 ) | |
| 11 | 2 5 1 | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 13 | 1 2 | unitcl | ⊢ ( 𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵 ) |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝐵 ) |
| 15 | 1 4 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) · 𝑌 ) = ( 𝑋 · ( ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) · 𝑌 ) ) ) |
| 16 | 9 10 12 14 15 | syl13anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) · 𝑌 ) = ( 𝑋 · ( ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) · 𝑌 ) ) ) |
| 17 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 18 | 2 5 4 17 | unitlinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) · 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 19 | 18 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) · 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · ( ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) · 𝑌 ) ) = ( 𝑋 · ( 1r ‘ 𝑅 ) ) ) |
| 21 | 1 4 17 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
| 22 | 21 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
| 23 | 20 22 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · ( ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) · 𝑌 ) ) = 𝑋 ) |
| 24 | 16 23 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · ( ( invr ‘ 𝑅 ) ‘ 𝑌 ) ) · 𝑌 ) = 𝑋 ) |
| 25 | 8 24 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 / 𝑌 ) · 𝑌 ) = 𝑋 ) |