This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 8-Dec-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| unit.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| unit.3 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| unit.4 | ⊢ 𝑆 = ( oppr ‘ 𝑅 ) | ||
| unit.5 | ⊢ 𝐸 = ( ∥r ‘ 𝑆 ) | ||
| Assertion | isunit | ⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∥ 1 ∧ 𝑋 𝐸 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unit.1 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 2 | unit.2 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | unit.3 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 4 | unit.4 | ⊢ 𝑆 = ( oppr ‘ 𝑅 ) | |
| 5 | unit.5 | ⊢ 𝐸 = ( ∥r ‘ 𝑆 ) | |
| 6 | elfvdm | ⊢ ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → 𝑅 ∈ dom Unit ) | |
| 7 | 6 1 | eleq2s | ⊢ ( 𝑋 ∈ 𝑈 → 𝑅 ∈ dom Unit ) |
| 8 | 7 | elexd | ⊢ ( 𝑋 ∈ 𝑈 → 𝑅 ∈ V ) |
| 9 | df-br | ⊢ ( 𝑋 ∥ 1 ↔ 〈 𝑋 , 1 〉 ∈ ∥ ) | |
| 10 | elfvdm | ⊢ ( 〈 𝑋 , 1 〉 ∈ ( ∥r ‘ 𝑅 ) → 𝑅 ∈ dom ∥r ) | |
| 11 | 10 3 | eleq2s | ⊢ ( 〈 𝑋 , 1 〉 ∈ ∥ → 𝑅 ∈ dom ∥r ) |
| 12 | 11 | elexd | ⊢ ( 〈 𝑋 , 1 〉 ∈ ∥ → 𝑅 ∈ V ) |
| 13 | 9 12 | sylbi | ⊢ ( 𝑋 ∥ 1 → 𝑅 ∈ V ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑋 ∥ 1 ∧ 𝑋 𝐸 1 ) → 𝑅 ∈ V ) |
| 15 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( ∥r ‘ 𝑟 ) = ( ∥r ‘ 𝑅 ) ) | |
| 16 | 15 3 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( ∥r ‘ 𝑟 ) = ∥ ) |
| 17 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( oppr ‘ 𝑟 ) = ( oppr ‘ 𝑅 ) ) | |
| 18 | 17 4 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( oppr ‘ 𝑟 ) = 𝑆 ) |
| 19 | 18 | fveq2d | ⊢ ( 𝑟 = 𝑅 → ( ∥r ‘ ( oppr ‘ 𝑟 ) ) = ( ∥r ‘ 𝑆 ) ) |
| 20 | 19 5 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( ∥r ‘ ( oppr ‘ 𝑟 ) ) = 𝐸 ) |
| 21 | 16 20 | ineq12d | ⊢ ( 𝑟 = 𝑅 → ( ( ∥r ‘ 𝑟 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑟 ) ) ) = ( ∥ ∩ 𝐸 ) ) |
| 22 | 21 | cnveqd | ⊢ ( 𝑟 = 𝑅 → ◡ ( ( ∥r ‘ 𝑟 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑟 ) ) ) = ◡ ( ∥ ∩ 𝐸 ) ) |
| 23 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑅 ) ) | |
| 24 | 23 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = 1 ) |
| 25 | 24 | sneqd | ⊢ ( 𝑟 = 𝑅 → { ( 1r ‘ 𝑟 ) } = { 1 } ) |
| 26 | 22 25 | imaeq12d | ⊢ ( 𝑟 = 𝑅 → ( ◡ ( ( ∥r ‘ 𝑟 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑟 ) ) ) “ { ( 1r ‘ 𝑟 ) } ) = ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ) |
| 27 | df-unit | ⊢ Unit = ( 𝑟 ∈ V ↦ ( ◡ ( ( ∥r ‘ 𝑟 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑟 ) ) ) “ { ( 1r ‘ 𝑟 ) } ) ) | |
| 28 | 3 | fvexi | ⊢ ∥ ∈ V |
| 29 | 28 | inex1 | ⊢ ( ∥ ∩ 𝐸 ) ∈ V |
| 30 | 29 | cnvex | ⊢ ◡ ( ∥ ∩ 𝐸 ) ∈ V |
| 31 | 30 | imaex | ⊢ ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ∈ V |
| 32 | 26 27 31 | fvmpt | ⊢ ( 𝑅 ∈ V → ( Unit ‘ 𝑅 ) = ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ) |
| 33 | 1 32 | eqtrid | ⊢ ( 𝑅 ∈ V → 𝑈 = ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ) |
| 34 | 33 | eleq2d | ⊢ ( 𝑅 ∈ V → ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ) ) |
| 35 | inss1 | ⊢ ( ∥ ∩ 𝐸 ) ⊆ ∥ | |
| 36 | 3 | reldvdsr | ⊢ Rel ∥ |
| 37 | relss | ⊢ ( ( ∥ ∩ 𝐸 ) ⊆ ∥ → ( Rel ∥ → Rel ( ∥ ∩ 𝐸 ) ) ) | |
| 38 | 35 36 37 | mp2 | ⊢ Rel ( ∥ ∩ 𝐸 ) |
| 39 | eliniseg2 | ⊢ ( Rel ( ∥ ∩ 𝐸 ) → ( 𝑋 ∈ ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ↔ 𝑋 ( ∥ ∩ 𝐸 ) 1 ) ) | |
| 40 | 38 39 | ax-mp | ⊢ ( 𝑋 ∈ ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ↔ 𝑋 ( ∥ ∩ 𝐸 ) 1 ) |
| 41 | brin | ⊢ ( 𝑋 ( ∥ ∩ 𝐸 ) 1 ↔ ( 𝑋 ∥ 1 ∧ 𝑋 𝐸 1 ) ) | |
| 42 | 40 41 | bitri | ⊢ ( 𝑋 ∈ ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ↔ ( 𝑋 ∥ 1 ∧ 𝑋 𝐸 1 ) ) |
| 43 | 34 42 | bitrdi | ⊢ ( 𝑅 ∈ V → ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∥ 1 ∧ 𝑋 𝐸 1 ) ) ) |
| 44 | 8 14 43 | pm5.21nii | ⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∥ 1 ∧ 𝑋 𝐸 1 ) ) |