This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013) (Revised by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngprop.b | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) | |
| drngprop.p | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) | ||
| drngprop.m | ⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐿 ) | ||
| Assertion | drngprop | ⊢ ( 𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngprop.b | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) | |
| 2 | drngprop.p | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) | |
| 3 | drngprop.m | ⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐿 ) | |
| 4 | eqidd | ⊢ ( 𝐾 ∈ Ring → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) | |
| 5 | 1 | a1i | ⊢ ( 𝐾 ∈ Ring → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 6 | 3 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) |
| 7 | 6 | a1i | ⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 8 | 4 5 7 | unitpropd | ⊢ ( 𝐾 ∈ Ring → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |
| 9 | 2 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) |
| 10 | 9 | a1i | ⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 11 | 4 5 10 | grpidpropd | ⊢ ( 𝐾 ∈ Ring → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 12 | 11 | sneqd | ⊢ ( 𝐾 ∈ Ring → { ( 0g ‘ 𝐾 ) } = { ( 0g ‘ 𝐿 ) } ) |
| 13 | 12 | difeq2d | ⊢ ( 𝐾 ∈ Ring → ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 14 | 8 13 | eqeq12d | ⊢ ( 𝐾 ∈ Ring → ( ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ↔ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 15 | 14 | pm5.32i | ⊢ ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 16 | 1 2 3 | ringprop | ⊢ ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) |
| 17 | 16 | anbi1i | ⊢ ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 18 | 15 17 | bitri | ⊢ ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 19 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 20 | eqid | ⊢ ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 ) | |
| 21 | eqid | ⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) | |
| 22 | 19 20 21 | isdrng | ⊢ ( 𝐾 ∈ DivRing ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ) |
| 23 | eqid | ⊢ ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 ) | |
| 24 | eqid | ⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) | |
| 25 | 1 23 24 | isdrng | ⊢ ( 𝐿 ∈ DivRing ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 26 | 18 22 25 | 3bitr4i | ⊢ ( 𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing ) |