This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a division ring". (Contributed by NM, 18-Oct-2012) (Revised by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isdrng.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| isdrng.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | isdrng | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isdrng.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | isdrng.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = ( Unit ‘ 𝑅 ) ) | |
| 5 | 4 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = 𝑈 ) |
| 6 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 8 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) | |
| 9 | 8 3 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
| 10 | 9 | sneqd | ⊢ ( 𝑟 = 𝑅 → { ( 0g ‘ 𝑟 ) } = { 0 } ) |
| 11 | 7 10 | difeq12d | ⊢ ( 𝑟 = 𝑅 → ( ( Base ‘ 𝑟 ) ∖ { ( 0g ‘ 𝑟 ) } ) = ( 𝐵 ∖ { 0 } ) ) |
| 12 | 5 11 | eqeq12d | ⊢ ( 𝑟 = 𝑅 → ( ( Unit ‘ 𝑟 ) = ( ( Base ‘ 𝑟 ) ∖ { ( 0g ‘ 𝑟 ) } ) ↔ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ) |
| 13 | df-drng | ⊢ DivRing = { 𝑟 ∈ Ring ∣ ( Unit ‘ 𝑟 ) = ( ( Base ‘ 𝑟 ) ∖ { ( 0g ‘ 𝑟 ) } ) } | |
| 14 | 12 13 | elrab2 | ⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = ( 𝐵 ∖ { 0 } ) ) ) |