This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprval.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| opprval.2 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| opprval.3 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | ||
| opprmulfval.4 | ⊢ ∙ = ( .r ‘ 𝑂 ) | ||
| Assertion | opprmul | ⊢ ( 𝑋 ∙ 𝑌 ) = ( 𝑌 · 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | opprval.2 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | opprval.3 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 4 | opprmulfval.4 | ⊢ ∙ = ( .r ‘ 𝑂 ) | |
| 5 | 1 2 3 4 | opprmulfval | ⊢ ∙ = tpos · |
| 6 | 5 | oveqi | ⊢ ( 𝑋 ∙ 𝑌 ) = ( 𝑋 tpos · 𝑌 ) |
| 7 | ovtpos | ⊢ ( 𝑋 tpos · 𝑌 ) = ( 𝑌 · 𝑋 ) | |
| 8 | 6 7 | eqtri | ⊢ ( 𝑋 ∙ 𝑌 ) = ( 𝑌 · 𝑋 ) |