This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " D is a complete metric" expressed in terms of functions on NN (or any other upper integer set). Thus, we only have to look at functions on NN , and not all possible Cauchy filters, to determine completeness. (The proof uses countable choice.) (Contributed by NM, 18-Dec-2006) (Revised by Mario Carneiro, 5-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscmet3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| iscmet3.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| iscmet3.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| iscmet3.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| Assertion | iscmet3 | ⊢ ( 𝜑 → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | iscmet3.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | iscmet3.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | iscmet3.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 5 | 2 | cmetcau | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 6 | 5 | a1d | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 7 | 6 | ralrimiva | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 9 | simpr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ 𝑔 ∈ ( CauFil ‘ 𝐷 ) ) → 𝑔 ∈ ( CauFil ‘ 𝐷 ) ) | |
| 10 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 11 | rphalfcl | ⊢ ( 1 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) | |
| 12 | 10 11 | ax-mp | ⊢ ( 1 / 2 ) ∈ ℝ+ |
| 13 | rpexpcl | ⊢ ( ( ( 1 / 2 ) ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) | |
| 14 | 12 13 | mpan | ⊢ ( 𝑘 ∈ ℤ → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 15 | cfili | ⊢ ( ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) → ∃ 𝑡 ∈ 𝑔 ∀ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) | |
| 16 | 9 14 15 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ 𝑔 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑘 ∈ ℤ ) → ∃ 𝑡 ∈ 𝑔 ∀ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 17 | 16 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ 𝑔 ∈ ( CauFil ‘ 𝐷 ) ) → ∀ 𝑘 ∈ ℤ ∃ 𝑡 ∈ 𝑔 ∀ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 18 | vex | ⊢ 𝑔 ∈ V | |
| 19 | znnen | ⊢ ℤ ≈ ℕ | |
| 20 | nnenom | ⊢ ℕ ≈ ω | |
| 21 | 19 20 | entri | ⊢ ℤ ≈ ω |
| 22 | raleq | ⊢ ( 𝑡 = ( 𝑠 ‘ 𝑘 ) → ( ∀ 𝑣 ∈ 𝑡 ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) | |
| 23 | 22 | raleqbi1dv | ⊢ ( 𝑡 = ( 𝑠 ‘ 𝑘 ) → ( ∀ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 24 | 18 21 23 | axcc4 | ⊢ ( ∀ 𝑘 ∈ ℤ ∃ 𝑡 ∈ 𝑔 ∀ 𝑢 ∈ 𝑡 ∀ 𝑣 ∈ 𝑡 ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) → ∃ 𝑠 ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 25 | 17 24 | syl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ 𝑔 ∈ ( CauFil ‘ 𝐷 ) ) → ∃ 𝑠 ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 26 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) → 𝑀 ∈ ℤ ) |
| 27 | 1 | uzenom | ⊢ ( 𝑀 ∈ ℤ → 𝑍 ≈ ω ) |
| 28 | endom | ⊢ ( 𝑍 ≈ ω → 𝑍 ≼ ω ) | |
| 29 | 26 27 28 | 3syl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) → 𝑍 ≼ ω ) |
| 30 | dfin5 | ⊢ ( ( I ‘ 𝑋 ) ∩ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ) = { 𝑥 ∈ ( I ‘ 𝑋 ) ∣ 𝑥 ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) } | |
| 31 | fzn0 | ⊢ ( ( 𝑀 ... 𝑘 ) ≠ ∅ ↔ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 32 | 31 | biimpri | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑘 ) ≠ ∅ ) |
| 33 | 32 1 | eleq2s | ⊢ ( 𝑘 ∈ 𝑍 → ( 𝑀 ... 𝑘 ) ≠ ∅ ) |
| 34 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 35 | 4 34 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 37 | simpl | ⊢ ( ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) → 𝑔 ∈ ( CauFil ‘ 𝐷 ) ) | |
| 38 | cfilfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑔 ∈ ( CauFil ‘ 𝐷 ) ) → 𝑔 ∈ ( Fil ‘ 𝑋 ) ) | |
| 39 | 36 37 38 | syl2an | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) → 𝑔 ∈ ( Fil ‘ 𝑋 ) ) |
| 40 | simprr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) → 𝑠 : ℤ ⟶ 𝑔 ) | |
| 41 | elfzelz | ⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑘 ) → 𝑛 ∈ ℤ ) | |
| 42 | ffvelcdm | ⊢ ( ( 𝑠 : ℤ ⟶ 𝑔 ∧ 𝑛 ∈ ℤ ) → ( 𝑠 ‘ 𝑛 ) ∈ 𝑔 ) | |
| 43 | 40 41 42 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝑠 ‘ 𝑛 ) ∈ 𝑔 ) |
| 44 | filelss | ⊢ ( ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑠 ‘ 𝑛 ) ∈ 𝑔 ) → ( 𝑠 ‘ 𝑛 ) ⊆ 𝑋 ) | |
| 45 | 39 43 44 | syl2an2r | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝑠 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 46 | 45 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) → ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 47 | r19.2z | ⊢ ( ( ( 𝑀 ... 𝑘 ) ≠ ∅ ∧ ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ⊆ 𝑋 ) → ∃ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ⊆ 𝑋 ) | |
| 48 | 33 46 47 | syl2anr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ∃ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 49 | iinss | ⊢ ( ∃ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ⊆ 𝑋 → ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ⊆ 𝑋 ) | |
| 50 | 48 49 | syl | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 51 | 8 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 52 | elfvdm | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝑋 ∈ dom Met ) | |
| 53 | fvi | ⊢ ( 𝑋 ∈ dom Met → ( I ‘ 𝑋 ) = 𝑋 ) | |
| 54 | 51 52 53 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( I ‘ 𝑋 ) = 𝑋 ) |
| 55 | 50 54 | sseqtrrd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ⊆ ( I ‘ 𝑋 ) ) |
| 56 | sseqin2 | ⊢ ( ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ⊆ ( I ‘ 𝑋 ) ↔ ( ( I ‘ 𝑋 ) ∩ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ) = ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ) | |
| 57 | 55 56 | sylib | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( I ‘ 𝑋 ) ∩ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ) = ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ) |
| 58 | 30 57 | eqtr3id | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → { 𝑥 ∈ ( I ‘ 𝑋 ) ∣ 𝑥 ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) } = ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ) |
| 59 | 39 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → 𝑔 ∈ ( Fil ‘ 𝑋 ) ) |
| 60 | 43 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) → ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ∈ 𝑔 ) |
| 61 | 60 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ∈ 𝑔 ) |
| 62 | 33 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 ... 𝑘 ) ≠ ∅ ) |
| 63 | fzfid | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 ... 𝑘 ) ∈ Fin ) | |
| 64 | iinfi | ⊢ ( ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ∈ 𝑔 ∧ ( 𝑀 ... 𝑘 ) ≠ ∅ ∧ ( 𝑀 ... 𝑘 ) ∈ Fin ) ) → ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ∈ ( fi ‘ 𝑔 ) ) | |
| 65 | 59 61 62 63 64 | syl13anc | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ∈ ( fi ‘ 𝑔 ) ) |
| 66 | filfi | ⊢ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) → ( fi ‘ 𝑔 ) = 𝑔 ) | |
| 67 | 59 66 | syl | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( fi ‘ 𝑔 ) = 𝑔 ) |
| 68 | 65 67 | eleqtrd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ∈ 𝑔 ) |
| 69 | fileln0 | ⊢ ( ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ∈ 𝑔 ) → ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ≠ ∅ ) | |
| 70 | 39 68 69 | syl2an2r | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ≠ ∅ ) |
| 71 | 58 70 | eqnetrd | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → { 𝑥 ∈ ( I ‘ 𝑋 ) ∣ 𝑥 ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) } ≠ ∅ ) |
| 72 | rabn0 | ⊢ ( { 𝑥 ∈ ( I ‘ 𝑋 ) ∣ 𝑥 ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) } ≠ ∅ ↔ ∃ 𝑥 ∈ ( I ‘ 𝑋 ) 𝑥 ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ) | |
| 73 | 71 72 | sylib | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) ∧ 𝑘 ∈ 𝑍 ) → ∃ 𝑥 ∈ ( I ‘ 𝑋 ) 𝑥 ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ) |
| 74 | 73 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑠 : ℤ ⟶ 𝑔 ) ) → ∀ 𝑘 ∈ 𝑍 ∃ 𝑥 ∈ ( I ‘ 𝑋 ) 𝑥 ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ) |
| 75 | 74 | adantrrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) → ∀ 𝑘 ∈ 𝑍 ∃ 𝑥 ∈ ( I ‘ 𝑋 ) 𝑥 ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ) |
| 76 | fvex | ⊢ ( I ‘ 𝑋 ) ∈ V | |
| 77 | eleq1 | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑘 ) → ( 𝑥 ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ↔ ( 𝑓 ‘ 𝑘 ) ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ) ) | |
| 78 | fvex | ⊢ ( 𝑓 ‘ 𝑘 ) ∈ V | |
| 79 | eliin | ⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ V → ( ( 𝑓 ‘ 𝑘 ) ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) | |
| 80 | 78 79 | ax-mp | ⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) |
| 81 | 77 80 | bitrdi | ⊢ ( 𝑥 = ( 𝑓 ‘ 𝑘 ) → ( 𝑥 ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) |
| 82 | 76 81 | axcc4dom | ⊢ ( ( 𝑍 ≼ ω ∧ ∀ 𝑘 ∈ 𝑍 ∃ 𝑥 ∈ ( I ‘ 𝑋 ) 𝑥 ∈ ∩ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑠 ‘ 𝑛 ) ) → ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) |
| 83 | 29 75 82 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) |
| 84 | df-ral | ⊢ ( ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ↔ ∀ 𝑓 ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ) | |
| 85 | 19.29 | ⊢ ( ( ∀ 𝑓 ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) → ∃ 𝑓 ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) | |
| 86 | 84 85 | sylanb | ⊢ ( ( ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ∧ ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) → ∃ 𝑓 ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) |
| 87 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → 𝑀 ∈ ℤ ) |
| 88 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 89 | simprrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ) | |
| 90 | feq3 | ⊢ ( ( I ‘ 𝑋 ) = 𝑋 → ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ↔ 𝑓 : 𝑍 ⟶ 𝑋 ) ) | |
| 91 | 88 52 53 90 | 4syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ↔ 𝑓 : 𝑍 ⟶ 𝑋 ) ) |
| 92 | 89 91 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → 𝑓 : 𝑍 ⟶ 𝑋 ) |
| 93 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) | |
| 94 | 93 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 95 | fveq2 | ⊢ ( 𝑘 = 𝑖 → ( 𝑠 ‘ 𝑘 ) = ( 𝑠 ‘ 𝑖 ) ) | |
| 96 | oveq2 | ⊢ ( 𝑘 = 𝑖 → ( ( 1 / 2 ) ↑ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑖 ) ) | |
| 97 | 96 | breq2d | ⊢ ( 𝑘 = 𝑖 → ( ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑖 ) ) ) |
| 98 | 95 97 | raleqbidv | ⊢ ( 𝑘 = 𝑖 → ( ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑖 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑖 ) ) ) |
| 99 | 95 98 | raleqbidv | ⊢ ( 𝑘 = 𝑖 → ( ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑖 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑖 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑖 ) ) ) |
| 100 | 99 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ∀ 𝑖 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑖 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑖 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑖 ) ) |
| 101 | 94 100 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → ∀ 𝑖 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑖 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑖 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑖 ) ) |
| 102 | simprrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) | |
| 103 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝑠 ‘ 𝑛 ) = ( 𝑠 ‘ 𝑗 ) ) | |
| 104 | 103 | eleq2d | ⊢ ( 𝑛 = 𝑗 → ( ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ↔ ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑗 ) ) ) |
| 105 | 104 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ↔ ∀ 𝑗 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑗 ) ) |
| 106 | oveq2 | ⊢ ( 𝑘 = 𝑖 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑖 ) ) | |
| 107 | fveq2 | ⊢ ( 𝑘 = 𝑖 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑖 ) ) | |
| 108 | 107 | eleq1d | ⊢ ( 𝑘 = 𝑖 → ( ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑗 ) ↔ ( 𝑓 ‘ 𝑖 ) ∈ ( 𝑠 ‘ 𝑗 ) ) ) |
| 109 | 106 108 | raleqbidv | ⊢ ( 𝑘 = 𝑖 → ( ∀ 𝑗 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑗 ) ↔ ∀ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝑓 ‘ 𝑖 ) ∈ ( 𝑠 ‘ 𝑗 ) ) ) |
| 110 | 105 109 | bitrid | ⊢ ( 𝑘 = 𝑖 → ( ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ↔ ∀ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝑓 ‘ 𝑖 ) ∈ ( 𝑠 ‘ 𝑗 ) ) ) |
| 111 | 110 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ 𝑍 ∀ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝑓 ‘ 𝑖 ) ∈ ( 𝑠 ‘ 𝑗 ) ) |
| 112 | 102 111 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → ∀ 𝑖 ∈ 𝑍 ∀ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝑓 ‘ 𝑖 ) ∈ ( 𝑠 ‘ 𝑗 ) ) |
| 113 | 88 34 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 114 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → 𝑔 ∈ ( CauFil ‘ 𝐷 ) ) | |
| 115 | 113 114 38 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → 𝑔 ∈ ( Fil ‘ 𝑋 ) ) |
| 116 | 93 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → 𝑠 : ℤ ⟶ 𝑔 ) |
| 117 | 1 2 87 88 92 101 112 | iscmet3lem1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → 𝑓 ∈ ( Cau ‘ 𝐷 ) ) |
| 118 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ) | |
| 119 | 117 92 118 | mp2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 120 | 1 2 87 88 92 101 112 115 116 119 | iscmet3lem2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) ) → ( 𝐽 fLim 𝑔 ) ≠ ∅ ) |
| 121 | 120 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) → ( ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) → ( 𝐽 fLim 𝑔 ) ≠ ∅ ) ) |
| 122 | 121 | exlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) → ( ∃ 𝑓 ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) → ( 𝐽 fLim 𝑔 ) ≠ ∅ ) ) |
| 123 | 86 122 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) → ( ( ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ∧ ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) ) → ( 𝐽 fLim 𝑔 ) ≠ ∅ ) ) |
| 124 | 123 | expdimp | ⊢ ( ( ( 𝜑 ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) → ( 𝐽 fLim 𝑔 ) ≠ ∅ ) ) |
| 125 | 124 | an32s | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑍 ⟶ ( I ‘ 𝑋 ) ∧ ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑠 ‘ 𝑛 ) ) → ( 𝐽 fLim 𝑔 ) ≠ ∅ ) ) |
| 126 | 83 125 | mpd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ ( 𝑔 ∈ ( CauFil ‘ 𝐷 ) ∧ ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) → ( 𝐽 fLim 𝑔 ) ≠ ∅ ) |
| 127 | 126 | expr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ 𝑔 ∈ ( CauFil ‘ 𝐷 ) ) → ( ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) → ( 𝐽 fLim 𝑔 ) ≠ ∅ ) ) |
| 128 | 127 | exlimdv | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ 𝑔 ∈ ( CauFil ‘ 𝐷 ) ) → ( ∃ 𝑠 ( 𝑠 : ℤ ⟶ 𝑔 ∧ ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑠 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑠 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) → ( 𝐽 fLim 𝑔 ) ≠ ∅ ) ) |
| 129 | 25 128 | mpd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ∧ 𝑔 ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐽 fLim 𝑔 ) ≠ ∅ ) |
| 130 | 129 | ralrimiva | ⊢ ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) → ∀ 𝑔 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑔 ) ≠ ∅ ) |
| 131 | 2 | iscmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑔 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑔 ) ≠ ∅ ) ) |
| 132 | 8 130 131 | sylanbrc | ⊢ ( ( 𝜑 ∧ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 133 | 132 | ex | ⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |
| 134 | 7 133 | impbid2 | ⊢ ( 𝜑 → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : 𝑍 ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ) |