This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uzinf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| Assertion | uzenom | ⊢ ( 𝑀 ∈ ℤ → 𝑍 ≈ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzinf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | fveq2 | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) | |
| 3 | 1 2 | eqtrid | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → 𝑍 = ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) |
| 4 | 3 | breq1d | ⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( 𝑍 ≈ ω ↔ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ≈ ω ) ) |
| 5 | omex | ⊢ ω ∈ V | |
| 6 | fvex | ⊢ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ∈ V | |
| 7 | 0z | ⊢ 0 ∈ ℤ | |
| 8 | 7 | elimel | ⊢ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ∈ ℤ |
| 9 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ↾ ω ) | |
| 10 | 8 9 | om2uzf1oi | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ↾ ω ) : ω –1-1-onto→ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) |
| 11 | f1oen2g | ⊢ ( ( ω ∈ V ∧ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ∈ V ∧ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ↾ ω ) : ω –1-1-onto→ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) → ω ≈ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) | |
| 12 | 5 6 10 11 | mp3an | ⊢ ω ≈ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) |
| 13 | 12 | ensymi | ⊢ ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ≈ ω |
| 14 | 4 13 | dedth | ⊢ ( 𝑀 ∈ ℤ → 𝑍 ≈ ω ) |