This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The convergence of a Cauchy sequence in a complete metric space. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 14-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cmetcau.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | cmetcau | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmetcau.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 5 | caun0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → 𝑋 ≠ ∅ ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → 𝑋 ≠ ∅ ) |
| 7 | n0 | ⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑋 ) | |
| 8 | 6 7 | sylib | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ∃ 𝑥 𝑥 ∈ 𝑋 ) |
| 9 | simpll | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 10 | simpr | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 11 | simplr | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) | |
| 12 | eqid | ⊢ ( 𝑦 ∈ ℕ ↦ if ( 𝑦 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑦 ) , 𝑥 ) ) = ( 𝑦 ∈ ℕ ↦ if ( 𝑦 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑦 ) , 𝑥 ) ) | |
| 13 | 1 9 10 11 12 | cmetcaulem | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 14 | 8 13 | exlimddv | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |