This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " D is a complete metric." meaning all Cauchy filters converge to a point in the space. (Contributed by Mario Carneiro, 1-May-2014) (Revised by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscmet.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | iscmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | elfvex | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 3 | elfvex | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) → 𝑋 ∈ V ) |
| 5 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( Met ‘ 𝑥 ) = ( Met ‘ 𝑋 ) ) | |
| 6 | 5 | rabeqdv | ⊢ ( 𝑥 = 𝑋 → { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } = { 𝑑 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ) |
| 7 | df-cmet | ⊢ CMet = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ) | |
| 8 | fvex | ⊢ ( Met ‘ 𝑋 ) ∈ V | |
| 9 | 8 | rabex | ⊢ { 𝑑 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ∈ V |
| 10 | 6 7 9 | fvmpt | ⊢ ( 𝑋 ∈ V → ( CMet ‘ 𝑋 ) = { 𝑑 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ) |
| 11 | 10 | eleq2d | ⊢ ( 𝑋 ∈ V → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ 𝐷 ∈ { 𝑑 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ) ) |
| 12 | fveq2 | ⊢ ( 𝑑 = 𝐷 → ( CauFil ‘ 𝑑 ) = ( CauFil ‘ 𝐷 ) ) | |
| 13 | fveq2 | ⊢ ( 𝑑 = 𝐷 → ( MetOpen ‘ 𝑑 ) = ( MetOpen ‘ 𝐷 ) ) | |
| 14 | 13 1 | eqtr4di | ⊢ ( 𝑑 = 𝐷 → ( MetOpen ‘ 𝑑 ) = 𝐽 ) |
| 15 | 14 | oveq1d | ⊢ ( 𝑑 = 𝐷 → ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) = ( 𝐽 fLim 𝑓 ) ) |
| 16 | 15 | neeq1d | ⊢ ( 𝑑 = 𝐷 → ( ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ ↔ ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) |
| 17 | 12 16 | raleqbidv | ⊢ ( 𝑑 = 𝐷 → ( ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ ↔ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) |
| 18 | 17 | elrab | ⊢ ( 𝐷 ∈ { 𝑑 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑓 ∈ ( CauFil ‘ 𝑑 ) ( ( MetOpen ‘ 𝑑 ) fLim 𝑓 ) ≠ ∅ } ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) |
| 19 | 11 18 | bitrdi | ⊢ ( 𝑋 ∈ V → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) ) |
| 20 | 2 4 19 | pm5.21nii | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) |