This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A metric D is complete iff all Cauchy sequences converge to a point in the space. The proof uses countable choice. Part of Definition 1.4-3 of Kreyszig p. 28. (Contributed by NM, 7-Sep-2006) (Revised by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscmet2.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | iscmet2 | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet2.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | 1 | cmetcau | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 4 | 3 | ex | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 5 | 4 | ssrdv | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 6 | 2 5 | jca | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 7 | ssel2 | ⊢ ( ( ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 8 | 7 | a1d | ⊢ ( ( ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ∧ 𝑓 ∈ ( Cau ‘ 𝐷 ) ) → ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 9 | 8 | ralrimiva | ⊢ ( ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) → ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) → ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 11 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 12 | 1zzd | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) → 1 ∈ ℤ ) | |
| 13 | simpl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 14 | 11 1 12 13 | iscmet3 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ∀ 𝑓 ∈ ( Cau ‘ 𝐷 ) ( 𝑓 : ℕ ⟶ 𝑋 → 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) ) |
| 15 | 10 14 | mpbird | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 16 | 6 15 | impbii | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( Cau ‘ 𝐷 ) ⊆ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |