This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An indexed intersection of elements of C is an element of the finite intersections of C . (Contributed by Mario Carneiro, 30-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinfi | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ ( fi ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) | |
| 2 | dfiin2g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
| 4 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 5 | 4 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
| 6 | 5 | inteqi | ⊢ ∩ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
| 7 | 3 6 | eqtr4di | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 8 | 4 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ) |
| 9 | 8 | 3anbi1i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) |
| 10 | intrnfi | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( fi ‘ 𝐶 ) ) | |
| 11 | 9 10 | sylan2b | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( fi ‘ 𝐶 ) ) |
| 12 | 7 11 | eqeltrd | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) ) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ ( fi ‘ 𝐶 ) ) |