This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfili | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cfil | ⊢ CauFil = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( Fil ‘ dom dom 𝑑 ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑓 ( 𝑑 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) } ) | |
| 2 | 1 | mptrcl | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → 𝐷 ∈ ∪ ran ∞Met ) |
| 3 | xmetunirn | ⊢ ( 𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
| 5 | iscfil2 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ dom dom 𝐷 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ dom dom 𝐷 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ) ) ) |
| 7 | 6 | ibi | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝐹 ∈ ( Fil ‘ dom dom 𝐷 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ) ) |
| 8 | 7 | simprd | ⊢ ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ) |
| 9 | breq2 | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑦 𝐷 𝑧 ) < 𝑟 ↔ ( 𝑦 𝐷 𝑧 ) < 𝑅 ) ) | |
| 10 | 9 | 2ralbidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ↔ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 ) ) |
| 11 | 10 | rexbidv | ⊢ ( 𝑟 = 𝑅 → ( ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ↔ ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 ) ) |
| 12 | 11 | rspccva | ⊢ ( ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑟 ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 ) |
| 13 | 8 12 | sylan | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 𝐷 𝑧 ) < 𝑅 ) |