This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscmet3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| iscmet3.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| iscmet3.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| iscmet3.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| iscmet3.6 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | ||
| iscmet3.9 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) | ||
| iscmet3.10 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ) | ||
| Assertion | iscmet3lem1 | ⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | iscmet3.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | iscmet3.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | iscmet3.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 5 | iscmet3.6 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | |
| 6 | iscmet3.9 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) | |
| 7 | iscmet3.10 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ) | |
| 8 | 1 | iscmet3lem3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) |
| 9 | 3 8 | sylan | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) |
| 10 | 1 | r19.2uz | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ∃ 𝑘 ∈ 𝑍 ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) |
| 11 | 9 10 | syl | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑘 ∈ 𝑍 ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) |
| 12 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑆 ‘ 𝑛 ) = ( 𝑆 ‘ 𝑘 ) ) | |
| 13 | 12 | eleq2d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) ) |
| 14 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 15 | simpl | ⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ 𝑍 ) | |
| 16 | 15 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 17 | rsp | ⊢ ( ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) → ( 𝑘 ∈ 𝑍 → ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ) ) | |
| 18 | 14 16 17 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 19 | 16 1 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 20 | eluzfz2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ( 𝑀 ... 𝑘 ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑘 ) ) |
| 22 | 13 18 21 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 23 | 12 | eleq2d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑛 ) ↔ ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑘 ) ) ) |
| 24 | oveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑗 ) ) | |
| 25 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ↔ ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑛 ) ) ) |
| 27 | 24 26 | raleqbidv | ⊢ ( 𝑘 = 𝑗 → ( ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑛 ) ) ) |
| 28 | 1 | uztrn2 | ⊢ ( ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑗 ∈ 𝑍 ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑗 ∈ 𝑍 ) |
| 30 | 27 14 29 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ∀ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 31 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) | |
| 32 | elfzuzb | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) | |
| 33 | 19 31 32 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) |
| 34 | 23 30 33 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 35 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 36 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 37 | 36 1 | eleq2s | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 38 | 37 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ ℤ ) |
| 39 | rsp | ⊢ ( ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) → ( 𝑘 ∈ ℤ → ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) | |
| 40 | 35 38 39 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 41 | oveq1 | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑘 ) → ( 𝑢 𝐷 𝑣 ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) ) | |
| 42 | 41 | breq1d | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑘 ) → ( ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 43 | oveq2 | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑗 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ) | |
| 44 | 43 | breq1d | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑗 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 45 | 42 44 | rspc2va | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑗 ) ∈ ( 𝑆 ‘ 𝑘 ) ) ∧ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 46 | 22 34 40 45 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 47 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 48 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ 𝑋 ) |
| 49 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) | |
| 50 | 48 15 49 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 51 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) | |
| 52 | 48 28 51 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) |
| 53 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑗 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) | |
| 54 | 47 50 52 53 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
| 55 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 56 | rphalfcl | ⊢ ( 1 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) | |
| 57 | 55 56 | ax-mp | ⊢ ( 1 / 2 ) ∈ ℝ+ |
| 58 | rpexpcl | ⊢ ( ( ( 1 / 2 ) ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) | |
| 59 | 57 38 58 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 60 | 59 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) |
| 61 | rpre | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) | |
| 62 | 61 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑟 ∈ ℝ ) |
| 63 | lttr | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ∧ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ∧ ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) | |
| 64 | 54 60 62 63 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ∧ ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
| 65 | 46 64 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
| 66 | 65 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
| 67 | 66 | ralrimdva | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
| 68 | 67 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ 𝑍 ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
| 69 | 11 68 | mpd | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) |
| 70 | 69 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) |
| 71 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 72 | 4 71 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 73 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 74 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 75 | 1 72 3 73 74 5 | iscauf | ⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑗 ) ) < 𝑟 ) ) |
| 76 | 70 75 | mpbird | ⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) |