This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscmet3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| iscmet3.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| iscmet3.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| iscmet3.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| iscmet3.6 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | ||
| iscmet3.9 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) | ||
| iscmet3.10 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ) | ||
| iscmet3.7 | ⊢ ( 𝜑 → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) | ||
| iscmet3.8 | ⊢ ( 𝜑 → 𝑆 : ℤ ⟶ 𝐺 ) | ||
| iscmet3.5 | ⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) | ||
| Assertion | iscmet3lem2 | ⊢ ( 𝜑 → ( 𝐽 fLim 𝐺 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | iscmet3.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | iscmet3.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | iscmet3.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 5 | iscmet3.6 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | |
| 6 | iscmet3.9 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) | |
| 7 | iscmet3.10 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ) | |
| 8 | iscmet3.7 | ⊢ ( 𝜑 → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) | |
| 9 | iscmet3.8 | ⊢ ( 𝜑 → 𝑆 : ℤ ⟶ 𝐺 ) | |
| 10 | iscmet3.5 | ⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 11 | eldmg | ⊢ ( 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) → ( 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ ∃ 𝑥 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) | |
| 12 | 11 | ibi | ⊢ ( 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) → ∃ 𝑥 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) |
| 13 | 10 12 | syl | ⊢ ( 𝜑 → ∃ 𝑥 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) |
| 14 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 15 | 4 14 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 16 | 2 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 18 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑋 ) | |
| 19 | 17 18 | sylan | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑋 ) |
| 20 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 21 | 2 | mopni2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) |
| 22 | 21 | 3expia | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑦 → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) |
| 23 | 20 22 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑦 → ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) |
| 24 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) |
| 25 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 26 | rphalfcl | ⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ ) | |
| 27 | 26 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 28 | 1 | iscmet3lem3 | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ) |
| 29 | 25 27 28 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ) |
| 30 | 20 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 31 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → 𝑥 ∈ 𝑋 ) |
| 32 | blcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) | |
| 33 | 30 31 27 32 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → 𝑥 ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 34 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) | |
| 35 | 27 | rpxrd | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ∈ ℝ* ) |
| 36 | 2 | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ) |
| 37 | 30 31 35 36 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ) |
| 38 | 1 33 25 34 37 | lmcvg | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 39 | 1 | rexanuz2 | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ↔ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 40 | 1 | r19.2uz | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ 𝑍 ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 41 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ) → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) |
| 42 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ) → 𝑆 : ℤ ⟶ 𝐺 ) |
| 43 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 44 | 43 1 | eleq2s | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 45 | 44 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ) → 𝑘 ∈ ℤ ) |
| 46 | ffvelcdm | ⊢ ( ( 𝑆 : ℤ ⟶ 𝐺 ∧ 𝑘 ∈ ℤ ) → ( 𝑆 ‘ 𝑘 ) ∈ 𝐺 ) | |
| 47 | 42 45 46 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ) → ( 𝑆 ‘ 𝑘 ) ∈ 𝐺 ) |
| 48 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 49 | 48 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ* ) |
| 50 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑋 ) | |
| 51 | 30 31 49 50 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑋 ) |
| 52 | 51 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑋 ) |
| 53 | 44 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℤ ) |
| 54 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 55 | rphalfcl | ⊢ ( 1 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) | |
| 56 | 54 55 | ax-mp | ⊢ ( 1 / 2 ) ∈ ℝ+ |
| 57 | rpexpcl | ⊢ ( ( ( 1 / 2 ) ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) | |
| 58 | 56 57 | mpan | ⊢ ( 𝑘 ∈ ℤ → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 59 | 53 58 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 60 | 59 | rpred | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) |
| 61 | 27 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 62 | 61 | rpred | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑟 / 2 ) ∈ ℝ ) |
| 63 | ltle | ⊢ ( ( ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ∧ ( 𝑟 / 2 ) ∈ ℝ ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ≤ ( 𝑟 / 2 ) ) ) | |
| 64 | 60 62 63 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ≤ ( 𝑟 / 2 ) ) ) |
| 65 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑆 ‘ 𝑛 ) = ( 𝑆 ‘ 𝑘 ) ) | |
| 66 | 65 | eleq2d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) ) |
| 67 | 7 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑛 ) ) |
| 68 | eluzfz2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ( 𝑀 ... 𝑘 ) ) | |
| 69 | 68 1 | eleq2s | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ( 𝑀 ... 𝑘 ) ) |
| 70 | 69 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ( 𝑀 ... 𝑘 ) ) |
| 71 | 66 67 70 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 72 | 71 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 73 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) → 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) | |
| 74 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 75 | 44 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) → 𝑘 ∈ ℤ ) |
| 76 | rsp | ⊢ ( ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) → ( 𝑘 ∈ ℤ → ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) | |
| 77 | 74 75 76 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) → ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 78 | oveq1 | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑘 ) → ( 𝑢 𝐷 𝑣 ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) ) | |
| 79 | 78 | breq1d | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑘 ) → ( ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 80 | oveq2 | ⊢ ( 𝑣 = 𝑦 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) | |
| 81 | 80 | breq1d | ⊢ ( 𝑣 = 𝑦 → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 82 | 79 81 | rspc2va | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) ∧ ∀ 𝑢 ∈ ( 𝑆 ‘ 𝑘 ) ∀ 𝑣 ∈ ( 𝑆 ‘ 𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 83 | 72 73 77 82 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 84 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 85 | 44 58 | syl | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 86 | 85 | rpxrd | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ* ) |
| 87 | 86 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ* ) |
| 88 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 89 | 88 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 90 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) |
| 91 | 9 44 46 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑆 ‘ 𝑘 ) ∈ 𝐺 ) |
| 92 | filelss | ⊢ ( ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝐺 ) → ( 𝑆 ‘ 𝑘 ) ⊆ 𝑋 ) | |
| 93 | 90 91 92 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑆 ‘ 𝑘 ) ⊆ 𝑋 ) |
| 94 | 93 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) → 𝑦 ∈ 𝑋 ) |
| 95 | elbl2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ* ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 ∈ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1 / 2 ) ↑ 𝑘 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) | |
| 96 | 84 87 89 94 95 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) → ( 𝑦 ∈ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1 / 2 ) ↑ 𝑘 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 97 | 83 96 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) ) → 𝑦 ∈ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 98 | 97 | ex | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑦 ∈ ( 𝑆 ‘ 𝑘 ) → 𝑦 ∈ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1 / 2 ) ↑ 𝑘 ) ) ) ) |
| 99 | 98 | ssrdv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 100 | 99 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1 / 2 ) ↑ 𝑘 ) ) ) |
| 101 | 30 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 102 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ 𝑋 ) |
| 103 | 102 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 104 | 59 | rpxrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ* ) |
| 105 | 35 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑟 / 2 ) ∈ ℝ* ) |
| 106 | ssbl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ* ∧ ( 𝑟 / 2 ) ∈ ℝ* ) ∧ ( ( 1 / 2 ) ↑ 𝑘 ) ≤ ( 𝑟 / 2 ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1 / 2 ) ↑ 𝑘 ) ) ⊆ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) | |
| 107 | 106 | 3expia | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ* ∧ ( 𝑟 / 2 ) ∈ ℝ* ) ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) ≤ ( 𝑟 / 2 ) → ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1 / 2 ) ↑ 𝑘 ) ) ⊆ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 108 | 101 103 104 105 107 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) ≤ ( 𝑟 / 2 ) → ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1 / 2 ) ↑ 𝑘 ) ) ⊆ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 109 | sstr | ⊢ ( ( ( 𝑆 ‘ 𝑘 ) ⊆ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1 / 2 ) ↑ 𝑘 ) ) ∧ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( ( 1 / 2 ) ↑ 𝑘 ) ) ⊆ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) | |
| 110 | 100 108 109 | syl6an | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) ≤ ( 𝑟 / 2 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 111 | 64 110 | syld | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 112 | 111 | adantrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 113 | 112 | impr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
| 114 | 31 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → 𝑥 ∈ 𝑋 ) |
| 115 | blcom | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑟 / 2 ) ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ↔ 𝑥 ∈ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) | |
| 116 | 101 105 114 103 115 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ↔ 𝑥 ∈ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
| 117 | rpre | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) | |
| 118 | 117 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → 𝑟 ∈ ℝ ) |
| 119 | blhalf | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ ∧ 𝑥 ∈ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) | |
| 120 | 119 | expr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ ) → ( 𝑥 ∈ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 121 | 101 103 118 120 | syl21anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑥 ∈ ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 122 | 116 121 | sylbid | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 123 | 122 | adantld | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 124 | 123 | impr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 125 | 113 124 | sstrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 126 | filss | ⊢ ( ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( 𝑆 ‘ 𝑘 ) ∈ 𝐺 ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑋 ∧ ( 𝑆 ‘ 𝑘 ) ⊆ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐺 ) | |
| 127 | 41 47 52 125 126 | syl13anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑘 ∈ 𝑍 ∧ ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐺 ) |
| 128 | 127 | rexlimdvaa | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑘 ∈ 𝑍 ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐺 ) ) |
| 129 | 40 128 | syl5 | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐺 ) ) |
| 130 | 39 129 | biimtrrid | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < ( 𝑟 / 2 ) ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑥 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐺 ) ) |
| 131 | 29 38 130 | mp2and | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐺 ) |
| 132 | 131 | ad2ant2r | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐺 ) |
| 133 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 134 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑦 ⊆ 𝑋 ) | |
| 135 | 133 134 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑦 ⊆ 𝑋 ) |
| 136 | 135 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) → 𝑦 ⊆ 𝑋 ) |
| 137 | simprr | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) → ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) | |
| 138 | filss | ⊢ ( ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐺 ∧ 𝑦 ⊆ 𝑋 ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) → 𝑦 ∈ 𝐺 ) | |
| 139 | 24 132 136 137 138 | syl13anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑦 ∈ 𝐽 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) ) → 𝑦 ∈ 𝐺 ) |
| 140 | 139 | rexlimdvaa | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 → 𝑦 ∈ 𝐺 ) ) |
| 141 | 23 140 | syld | ⊢ ( ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐺 ) ) |
| 142 | 141 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐺 ) ) |
| 143 | flimopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐺 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐺 ) ) ) ) | |
| 144 | 17 8 143 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐺 ) ) ) ) |
| 145 | 144 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐺 ) ) ) ) |
| 146 | 19 142 145 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ ( 𝐽 fLim 𝐺 ) ) |
| 147 | 146 | ne0d | ⊢ ( ( 𝜑 ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐽 fLim 𝐺 ) ≠ ∅ ) |
| 148 | 13 147 | exlimddv | ⊢ ( 𝜑 → ( 𝐽 fLim 𝐺 ) ≠ ∅ ) |