This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isores2 | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , ( 𝑆 ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 2 | ffvelcdm | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 3 | 2 | adantrr | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) |
| 4 | ffvelcdm | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) | |
| 5 | 4 | adantrl | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) |
| 6 | brinxp | ⊢ ( ( ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑥 ) ( 𝑆 ∩ ( 𝐵 × 𝐵 ) ) ( 𝐻 ‘ 𝑦 ) ) ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑥 ) ( 𝑆 ∩ ( 𝐵 × 𝐵 ) ) ( 𝐻 ‘ 𝑦 ) ) ) |
| 8 | 1 7 | sylan | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑥 ) ( 𝑆 ∩ ( 𝐵 × 𝐵 ) ) ( 𝐻 ‘ 𝑦 ) ) ) |
| 9 | 8 | anassrs | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑥 ) ( 𝑆 ∩ ( 𝐵 × 𝐵 ) ) ( 𝐻 ‘ 𝑦 ) ) ) |
| 10 | 9 | bibi2d | ⊢ ( ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ( 𝑆 ∩ ( 𝐵 × 𝐵 ) ) ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 11 | 10 | ralbidva | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ( 𝑆 ∩ ( 𝐵 × 𝐵 ) ) ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 12 | 11 | ralbidva | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ( 𝑆 ∩ ( 𝐵 × 𝐵 ) ) ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 13 | 12 | pm5.32i | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ( 𝑆 ∩ ( 𝐵 × 𝐵 ) ) ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 14 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 15 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , ( 𝑆 ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) ( 𝑆 ∩ ( 𝐵 × 𝐵 ) ) ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 16 | 13 14 15 | 3bitr4i | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝑅 , ( 𝑆 ∩ ( 𝐵 × 𝐵 ) ) ( 𝐴 , 𝐵 ) ) |