This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unit interval expressed as an order topology. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfii5 | ⊢ II = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfii2 | ⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) | |
| 2 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 3 | eqid | ⊢ ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ ) | |
| 4 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 5 | 3 4 | xrrest | ⊢ ( ( 0 [,] 1 ) ⊆ ℝ → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] 1 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) |
| 6 | 2 5 | ax-mp | ⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] 1 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
| 7 | ordtresticc | ⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] 1 ) ) = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) | |
| 8 | 1 6 7 | 3eqtr2i | ⊢ II = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) |