This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defined bijection from [ 0 , 1 ) to [ 0 , +oo ) is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icopnfhmeo.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) | |
| icopnfhmeo.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | icopnfhmeo | ⊢ ( 𝐹 Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ ( ( 𝐽 ↾t ( 0 [,) 1 ) ) Homeo ( 𝐽 ↾t ( 0 [,) +∞ ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icopnfhmeo.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 0 [,) 1 ) ↦ ( 𝑥 / ( 1 − 𝑥 ) ) ) | |
| 2 | icopnfhmeo.j | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 3 | 1 | icopnfcnv | ⊢ ( 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) ∧ ◡ 𝐹 = ( 𝑦 ∈ ( 0 [,) +∞ ) ↦ ( 𝑦 / ( 1 + 𝑦 ) ) ) ) |
| 4 | 3 | simpli | ⊢ 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | 1xr | ⊢ 1 ∈ ℝ* | |
| 7 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ* ) → ( 𝑥 ∈ ( 0 [,) 1 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < 1 ) ) ) | |
| 8 | 5 6 7 | mp2an | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 < 1 ) ) |
| 9 | 8 | simp1bi | ⊢ ( 𝑥 ∈ ( 0 [,) 1 ) → 𝑥 ∈ ℝ ) |
| 10 | 9 | ssriv | ⊢ ( 0 [,) 1 ) ⊆ ℝ |
| 11 | 10 | sseli | ⊢ ( 𝑧 ∈ ( 0 [,) 1 ) → 𝑧 ∈ ℝ ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → 𝑧 ∈ ℝ ) |
| 13 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ* ) → ( 𝑤 ∈ ( 0 [,) 1 ) ↔ ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤 ∧ 𝑤 < 1 ) ) ) | |
| 14 | 5 6 13 | mp2an | ⊢ ( 𝑤 ∈ ( 0 [,) 1 ) ↔ ( 𝑤 ∈ ℝ ∧ 0 ≤ 𝑤 ∧ 𝑤 < 1 ) ) |
| 15 | 14 | simp3bi | ⊢ ( 𝑤 ∈ ( 0 [,) 1 ) → 𝑤 < 1 ) |
| 16 | 10 | sseli | ⊢ ( 𝑤 ∈ ( 0 [,) 1 ) → 𝑤 ∈ ℝ ) |
| 17 | 1re | ⊢ 1 ∈ ℝ | |
| 18 | difrp | ⊢ ( ( 𝑤 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑤 < 1 ↔ ( 1 − 𝑤 ) ∈ ℝ+ ) ) | |
| 19 | 16 17 18 | sylancl | ⊢ ( 𝑤 ∈ ( 0 [,) 1 ) → ( 𝑤 < 1 ↔ ( 1 − 𝑤 ) ∈ ℝ+ ) ) |
| 20 | 15 19 | mpbid | ⊢ ( 𝑤 ∈ ( 0 [,) 1 ) → ( 1 − 𝑤 ) ∈ ℝ+ ) |
| 21 | 20 | rpregt0d | ⊢ ( 𝑤 ∈ ( 0 [,) 1 ) → ( ( 1 − 𝑤 ) ∈ ℝ ∧ 0 < ( 1 − 𝑤 ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( ( 1 − 𝑤 ) ∈ ℝ ∧ 0 < ( 1 − 𝑤 ) ) ) |
| 23 | 16 | adantl | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → 𝑤 ∈ ℝ ) |
| 24 | elico2 | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ* ) → ( 𝑧 ∈ ( 0 [,) 1 ) ↔ ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ∧ 𝑧 < 1 ) ) ) | |
| 25 | 5 6 24 | mp2an | ⊢ ( 𝑧 ∈ ( 0 [,) 1 ) ↔ ( 𝑧 ∈ ℝ ∧ 0 ≤ 𝑧 ∧ 𝑧 < 1 ) ) |
| 26 | 25 | simp3bi | ⊢ ( 𝑧 ∈ ( 0 [,) 1 ) → 𝑧 < 1 ) |
| 27 | difrp | ⊢ ( ( 𝑧 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑧 < 1 ↔ ( 1 − 𝑧 ) ∈ ℝ+ ) ) | |
| 28 | 11 17 27 | sylancl | ⊢ ( 𝑧 ∈ ( 0 [,) 1 ) → ( 𝑧 < 1 ↔ ( 1 − 𝑧 ) ∈ ℝ+ ) ) |
| 29 | 26 28 | mpbid | ⊢ ( 𝑧 ∈ ( 0 [,) 1 ) → ( 1 − 𝑧 ) ∈ ℝ+ ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( 1 − 𝑧 ) ∈ ℝ+ ) |
| 31 | 30 | rpregt0d | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( ( 1 − 𝑧 ) ∈ ℝ ∧ 0 < ( 1 − 𝑧 ) ) ) |
| 32 | lt2mul2div | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ ( ( 1 − 𝑤 ) ∈ ℝ ∧ 0 < ( 1 − 𝑤 ) ) ) ∧ ( 𝑤 ∈ ℝ ∧ ( ( 1 − 𝑧 ) ∈ ℝ ∧ 0 < ( 1 − 𝑧 ) ) ) ) → ( ( 𝑧 · ( 1 − 𝑤 ) ) < ( 𝑤 · ( 1 − 𝑧 ) ) ↔ ( 𝑧 / ( 1 − 𝑧 ) ) < ( 𝑤 / ( 1 − 𝑤 ) ) ) ) | |
| 33 | 12 22 23 31 32 | syl22anc | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( ( 𝑧 · ( 1 − 𝑤 ) ) < ( 𝑤 · ( 1 − 𝑧 ) ) ↔ ( 𝑧 / ( 1 − 𝑧 ) ) < ( 𝑤 / ( 1 − 𝑤 ) ) ) ) |
| 34 | 12 23 | remulcld | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( 𝑧 · 𝑤 ) ∈ ℝ ) |
| 35 | 12 23 34 | ltsub1d | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( 𝑧 < 𝑤 ↔ ( 𝑧 − ( 𝑧 · 𝑤 ) ) < ( 𝑤 − ( 𝑧 · 𝑤 ) ) ) ) |
| 36 | 12 | recnd | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → 𝑧 ∈ ℂ ) |
| 37 | 1cnd | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → 1 ∈ ℂ ) | |
| 38 | 23 | recnd | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → 𝑤 ∈ ℂ ) |
| 39 | 36 37 38 | subdid | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( 𝑧 · ( 1 − 𝑤 ) ) = ( ( 𝑧 · 1 ) − ( 𝑧 · 𝑤 ) ) ) |
| 40 | 36 | mulridd | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( 𝑧 · 1 ) = 𝑧 ) |
| 41 | 40 | oveq1d | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( ( 𝑧 · 1 ) − ( 𝑧 · 𝑤 ) ) = ( 𝑧 − ( 𝑧 · 𝑤 ) ) ) |
| 42 | 39 41 | eqtrd | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( 𝑧 · ( 1 − 𝑤 ) ) = ( 𝑧 − ( 𝑧 · 𝑤 ) ) ) |
| 43 | 38 37 36 | subdid | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( 𝑤 · ( 1 − 𝑧 ) ) = ( ( 𝑤 · 1 ) − ( 𝑤 · 𝑧 ) ) ) |
| 44 | 38 | mulridd | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( 𝑤 · 1 ) = 𝑤 ) |
| 45 | 38 36 | mulcomd | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( 𝑤 · 𝑧 ) = ( 𝑧 · 𝑤 ) ) |
| 46 | 44 45 | oveq12d | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( ( 𝑤 · 1 ) − ( 𝑤 · 𝑧 ) ) = ( 𝑤 − ( 𝑧 · 𝑤 ) ) ) |
| 47 | 43 46 | eqtrd | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( 𝑤 · ( 1 − 𝑧 ) ) = ( 𝑤 − ( 𝑧 · 𝑤 ) ) ) |
| 48 | 42 47 | breq12d | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( ( 𝑧 · ( 1 − 𝑤 ) ) < ( 𝑤 · ( 1 − 𝑧 ) ) ↔ ( 𝑧 − ( 𝑧 · 𝑤 ) ) < ( 𝑤 − ( 𝑧 · 𝑤 ) ) ) ) |
| 49 | 35 48 | bitr4d | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( 𝑧 < 𝑤 ↔ ( 𝑧 · ( 1 − 𝑤 ) ) < ( 𝑤 · ( 1 − 𝑧 ) ) ) ) |
| 50 | id | ⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) | |
| 51 | oveq2 | ⊢ ( 𝑥 = 𝑧 → ( 1 − 𝑥 ) = ( 1 − 𝑧 ) ) | |
| 52 | 50 51 | oveq12d | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 / ( 1 − 𝑥 ) ) = ( 𝑧 / ( 1 − 𝑧 ) ) ) |
| 53 | ovex | ⊢ ( 𝑧 / ( 1 − 𝑧 ) ) ∈ V | |
| 54 | 52 1 53 | fvmpt | ⊢ ( 𝑧 ∈ ( 0 [,) 1 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 / ( 1 − 𝑧 ) ) ) |
| 55 | id | ⊢ ( 𝑥 = 𝑤 → 𝑥 = 𝑤 ) | |
| 56 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 1 − 𝑥 ) = ( 1 − 𝑤 ) ) | |
| 57 | 55 56 | oveq12d | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 / ( 1 − 𝑥 ) ) = ( 𝑤 / ( 1 − 𝑤 ) ) ) |
| 58 | ovex | ⊢ ( 𝑤 / ( 1 − 𝑤 ) ) ∈ V | |
| 59 | 57 1 58 | fvmpt | ⊢ ( 𝑤 ∈ ( 0 [,) 1 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 / ( 1 − 𝑤 ) ) ) |
| 60 | 54 59 | breqan12d | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ↔ ( 𝑧 / ( 1 − 𝑧 ) ) < ( 𝑤 / ( 1 − 𝑤 ) ) ) ) |
| 61 | 33 49 60 | 3bitr4d | ⊢ ( ( 𝑧 ∈ ( 0 [,) 1 ) ∧ 𝑤 ∈ ( 0 [,) 1 ) ) → ( 𝑧 < 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) |
| 62 | 61 | rgen2 | ⊢ ∀ 𝑧 ∈ ( 0 [,) 1 ) ∀ 𝑤 ∈ ( 0 [,) 1 ) ( 𝑧 < 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) |
| 63 | df-isom | ⊢ ( 𝐹 Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ↔ ( 𝐹 : ( 0 [,) 1 ) –1-1-onto→ ( 0 [,) +∞ ) ∧ ∀ 𝑧 ∈ ( 0 [,) 1 ) ∀ 𝑤 ∈ ( 0 [,) 1 ) ( 𝑧 < 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝐹 ‘ 𝑤 ) ) ) ) | |
| 64 | 4 62 63 | mpbir2an | ⊢ 𝐹 Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) |
| 65 | letsr | ⊢ ≤ ∈ TosetRel | |
| 66 | 65 | elexi | ⊢ ≤ ∈ V |
| 67 | 66 | inex1 | ⊢ ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) ∈ V |
| 68 | 66 | inex1 | ⊢ ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) ∈ V |
| 69 | icossxr | ⊢ ( 0 [,) 1 ) ⊆ ℝ* | |
| 70 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 71 | leiso | ⊢ ( ( ( 0 [,) 1 ) ⊆ ℝ* ∧ ( 0 [,) +∞ ) ⊆ ℝ* ) → ( 𝐹 Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ↔ 𝐹 Isom ≤ , ≤ ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ) ) | |
| 72 | 69 70 71 | mp2an | ⊢ ( 𝐹 Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ↔ 𝐹 Isom ≤ , ≤ ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ) |
| 73 | 64 72 | mpbi | ⊢ 𝐹 Isom ≤ , ≤ ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) |
| 74 | isores1 | ⊢ ( 𝐹 Isom ≤ , ≤ ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ↔ 𝐹 Isom ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) , ≤ ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ) | |
| 75 | 73 74 | mpbi | ⊢ 𝐹 Isom ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) , ≤ ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) |
| 76 | isores2 | ⊢ ( 𝐹 Isom ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) , ≤ ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ↔ 𝐹 Isom ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) , ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ) | |
| 77 | 75 76 | mpbi | ⊢ 𝐹 Isom ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) , ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) |
| 78 | tsrps | ⊢ ( ≤ ∈ TosetRel → ≤ ∈ PosetRel ) | |
| 79 | 65 78 | ax-mp | ⊢ ≤ ∈ PosetRel |
| 80 | ledm | ⊢ ℝ* = dom ≤ | |
| 81 | 80 | psssdm | ⊢ ( ( ≤ ∈ PosetRel ∧ ( 0 [,) 1 ) ⊆ ℝ* ) → dom ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) = ( 0 [,) 1 ) ) |
| 82 | 79 69 81 | mp2an | ⊢ dom ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) = ( 0 [,) 1 ) |
| 83 | 82 | eqcomi | ⊢ ( 0 [,) 1 ) = dom ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) |
| 84 | 80 | psssdm | ⊢ ( ( ≤ ∈ PosetRel ∧ ( 0 [,) +∞ ) ⊆ ℝ* ) → dom ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) = ( 0 [,) +∞ ) ) |
| 85 | 79 70 84 | mp2an | ⊢ dom ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) = ( 0 [,) +∞ ) |
| 86 | 85 | eqcomi | ⊢ ( 0 [,) +∞ ) = dom ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) |
| 87 | 83 86 | ordthmeo | ⊢ ( ( ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) ∈ V ∧ ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) ∈ V ∧ 𝐹 Isom ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) , ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ) → 𝐹 ∈ ( ( ordTop ‘ ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ‘ ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) ) ) ) |
| 88 | 67 68 77 87 | mp3an | ⊢ 𝐹 ∈ ( ( ordTop ‘ ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ‘ ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) ) ) |
| 89 | eqid | ⊢ ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ ) | |
| 90 | 2 89 | xrrest2 | ⊢ ( ( 0 [,) 1 ) ⊆ ℝ → ( 𝐽 ↾t ( 0 [,) 1 ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,) 1 ) ) ) |
| 91 | 10 90 | ax-mp | ⊢ ( 𝐽 ↾t ( 0 [,) 1 ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,) 1 ) ) |
| 92 | iccssico2 | ⊢ ( ( 𝑥 ∈ ( 0 [,) 1 ) ∧ 𝑦 ∈ ( 0 [,) 1 ) ) → ( 𝑥 [,] 𝑦 ) ⊆ ( 0 [,) 1 ) ) | |
| 93 | 69 92 | ordtrestixx | ⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,) 1 ) ) = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) ) |
| 94 | 91 93 | eqtri | ⊢ ( 𝐽 ↾t ( 0 [,) 1 ) ) = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) ) |
| 95 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 96 | 2 89 | xrrest2 | ⊢ ( ( 0 [,) +∞ ) ⊆ ℝ → ( 𝐽 ↾t ( 0 [,) +∞ ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,) +∞ ) ) ) |
| 97 | 95 96 | ax-mp | ⊢ ( 𝐽 ↾t ( 0 [,) +∞ ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,) +∞ ) ) |
| 98 | iccssico2 | ⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 [,] 𝑦 ) ⊆ ( 0 [,) +∞ ) ) | |
| 99 | 70 98 | ordtrestixx | ⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,) +∞ ) ) = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) ) |
| 100 | 97 99 | eqtri | ⊢ ( 𝐽 ↾t ( 0 [,) +∞ ) ) = ( ordTop ‘ ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) ) |
| 101 | 94 100 | oveq12i | ⊢ ( ( 𝐽 ↾t ( 0 [,) 1 ) ) Homeo ( 𝐽 ↾t ( 0 [,) +∞ ) ) ) = ( ( ordTop ‘ ( ≤ ∩ ( ( 0 [,) 1 ) × ( 0 [,) 1 ) ) ) ) Homeo ( ordTop ‘ ( ≤ ∩ ( ( 0 [,) +∞ ) × ( 0 [,) +∞ ) ) ) ) ) |
| 102 | 88 101 | eleqtrri | ⊢ 𝐹 ∈ ( ( 𝐽 ↾t ( 0 [,) 1 ) ) Homeo ( 𝐽 ↾t ( 0 [,) +∞ ) ) ) |
| 103 | 64 102 | pm3.2i | ⊢ ( 𝐹 Isom < , < ( ( 0 [,) 1 ) , ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ ( ( 𝐽 ↾t ( 0 [,) 1 ) ) Homeo ( 𝐽 ↾t ( 0 [,) +∞ ) ) ) ) |