This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A surjective group homomorphism F from G to H induces an isomorphism J from Q to H , where Q is the factor group of G by F 's kernel K . (Contributed by Thierry Arnoux, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmqusker.1 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| ghmqusker.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | ||
| ghmqusker.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | ||
| ghmqusker.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) | ||
| ghmqusker.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | ||
| ghmqusker.s | ⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) ) | ||
| Assertion | ghmqusker | ⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusker.1 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| 2 | ghmqusker.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 3 | ghmqusker.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | |
| 4 | ghmqusker.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) | |
| 5 | ghmqusker.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | |
| 6 | ghmqusker.s | ⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) ) | |
| 7 | 1 2 3 4 5 | ghmquskerlem3 | ⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ) |
| 8 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) | |
| 9 | 2 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 10 | 9 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝐺 ∈ Grp ) |
| 11 | 1 | ghmker | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 12 | 2 11 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 13 | 3 12 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 14 | nsgsubg | ⊢ ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 | 15 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 17 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 18 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 19 | 17 18 | ghmf | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 20 | 2 19 | syl | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 21 | 20 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
| 22 | 21 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
| 24 | 4 | a1i | ⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) ) |
| 25 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 26 | ovexd | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V ) | |
| 27 | 24 25 26 9 | qusbas | ⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
| 28 | eqid | ⊢ ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 ) | |
| 29 | 17 28 | eqger | ⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
| 30 | 13 14 29 | 3syl | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
| 31 | 30 | qsss | ⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 32 | 27 31 | eqsstrrd | ⊢ ( 𝜑 → ( Base ‘ 𝑄 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 33 | 32 | sselda | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
| 34 | 33 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
| 35 | 34 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 36 | 35 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 38 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 39 | 38 | eqeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐽 ‘ 𝑟 ) = 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
| 40 | 39 | biimpa | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 41 | fniniseg | ⊢ ( 𝐹 Fn ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) | |
| 42 | 41 | biimpar | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
| 43 | 23 37 40 42 | syl12anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
| 44 | 43 3 | eleqtrrdi | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑥 ∈ 𝐾 ) |
| 45 | 28 | eqg0el | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) = 𝐾 ↔ 𝑥 ∈ 𝐾 ) ) |
| 46 | 45 | biimpar | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝐾 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) = 𝐾 ) |
| 47 | 10 16 44 46 | syl21anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) = 𝐾 ) |
| 48 | 30 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
| 49 | simpr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) | |
| 50 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
| 51 | 49 50 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
| 52 | 51 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
| 53 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑥 ∈ 𝑟 ) | |
| 54 | qsel | ⊢ ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ∧ 𝑥 ∈ 𝑟 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) | |
| 55 | 48 52 53 54 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
| 56 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 57 | 17 28 56 | eqgid | ⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = 𝐾 ) |
| 58 | 15 57 | syl | ⊢ ( 𝜑 → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = 𝐾 ) |
| 59 | 58 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = 𝐾 ) |
| 60 | 47 55 59 | 3eqtr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑟 = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) |
| 61 | 4 56 | qus0 | ⊢ ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 0g ‘ 𝑄 ) ) |
| 62 | 13 61 | syl | ⊢ ( 𝜑 → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 0g ‘ 𝑄 ) ) |
| 63 | 62 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 0g ‘ 𝑄 ) ) |
| 64 | 63 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 0g ‘ 𝑄 ) ) |
| 65 | 60 64 | eqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑟 = ( 0g ‘ 𝑄 ) ) |
| 66 | 63 | eqeq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑟 = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ↔ 𝑟 = ( 0g ‘ 𝑄 ) ) ) |
| 67 | 66 | biimpar | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → 𝑟 = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) |
| 68 | 67 | fveq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐽 ‘ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 69 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 70 | 69 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 71 | 17 56 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 72 | 9 71 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 73 | 72 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 74 | 1 70 3 4 5 73 | ghmquskerlem1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → ( 𝐽 ‘ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) |
| 75 | 56 1 | ghmid | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = 0 ) |
| 76 | 2 75 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = 0 ) |
| 77 | 76 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = 0 ) |
| 78 | 68 74 77 | 3eqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → ( 𝐽 ‘ 𝑟 ) = 0 ) |
| 79 | 65 78 | impbida | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐽 ‘ 𝑟 ) = 0 ↔ 𝑟 = ( 0g ‘ 𝑄 ) ) ) |
| 80 | 1 69 3 4 5 49 | ghmquskerlem2 | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥 ∈ 𝑟 ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 81 | 79 80 | r19.29a | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( ( 𝐽 ‘ 𝑟 ) = 0 ↔ 𝑟 = ( 0g ‘ 𝑄 ) ) ) |
| 82 | 81 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) ↔ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) ) ) |
| 83 | simpr | ⊢ ( ( 𝜑 ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → 𝑟 = ( 0g ‘ 𝑄 ) ) | |
| 84 | 4 | qusgrp | ⊢ ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑄 ∈ Grp ) |
| 85 | 13 84 | syl | ⊢ ( 𝜑 → 𝑄 ∈ Grp ) |
| 86 | eqid | ⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) | |
| 87 | eqid | ⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) | |
| 88 | 86 87 | grpidcl | ⊢ ( 𝑄 ∈ Grp → ( 0g ‘ 𝑄 ) ∈ ( Base ‘ 𝑄 ) ) |
| 89 | 85 88 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑄 ) ∈ ( Base ‘ 𝑄 ) ) |
| 90 | 89 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → ( 0g ‘ 𝑄 ) ∈ ( Base ‘ 𝑄 ) ) |
| 91 | 83 90 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) |
| 92 | 91 | ex | ⊢ ( 𝜑 → ( 𝑟 = ( 0g ‘ 𝑄 ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) ) |
| 93 | 92 | pm4.71rd | ⊢ ( 𝜑 → ( 𝑟 = ( 0g ‘ 𝑄 ) ↔ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) ) ) |
| 94 | 82 93 | bitr4d | ⊢ ( 𝜑 → ( ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) ↔ 𝑟 = ( 0g ‘ 𝑄 ) ) ) |
| 95 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 96 | 95 | imaexd | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐹 “ 𝑞 ) ∈ V ) |
| 97 | 96 | uniexd | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ 𝑄 ) ) → ∪ ( 𝐹 “ 𝑞 ) ∈ V ) |
| 98 | 5 | a1i | ⊢ ( 𝜑 → 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) ) |
| 99 | 22 36 | fnfvelrnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 100 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ran 𝐹 = ( Base ‘ 𝐻 ) ) |
| 101 | 99 100 | eleqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐻 ) ) |
| 102 | 38 101 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ 𝑟 ) ∈ ( Base ‘ 𝐻 ) ) |
| 103 | 102 80 | r19.29a | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽 ‘ 𝑟 ) ∈ ( Base ‘ 𝐻 ) ) |
| 104 | 97 98 103 | fmpt2d | ⊢ ( 𝜑 → 𝐽 : ( Base ‘ 𝑄 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 105 | 104 | ffnd | ⊢ ( 𝜑 → 𝐽 Fn ( Base ‘ 𝑄 ) ) |
| 106 | fniniseg | ⊢ ( 𝐽 Fn ( Base ‘ 𝑄 ) → ( 𝑟 ∈ ( ◡ 𝐽 “ { 0 } ) ↔ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) ) ) | |
| 107 | 105 106 | syl | ⊢ ( 𝜑 → ( 𝑟 ∈ ( ◡ 𝐽 “ { 0 } ) ↔ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) ) ) |
| 108 | velsn | ⊢ ( 𝑟 ∈ { ( 0g ‘ 𝑄 ) } ↔ 𝑟 = ( 0g ‘ 𝑄 ) ) | |
| 109 | 108 | a1i | ⊢ ( 𝜑 → ( 𝑟 ∈ { ( 0g ‘ 𝑄 ) } ↔ 𝑟 = ( 0g ‘ 𝑄 ) ) ) |
| 110 | 94 107 109 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑟 ∈ ( ◡ 𝐽 “ { 0 } ) ↔ 𝑟 ∈ { ( 0g ‘ 𝑄 ) } ) ) |
| 111 | 110 | eqrdv | ⊢ ( 𝜑 → ( ◡ 𝐽 “ { 0 } ) = { ( 0g ‘ 𝑄 ) } ) |
| 112 | 86 18 87 1 | kerf1ghm | ⊢ ( 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) → ( 𝐽 : ( Base ‘ 𝑄 ) –1-1→ ( Base ‘ 𝐻 ) ↔ ( ◡ 𝐽 “ { 0 } ) = { ( 0g ‘ 𝑄 ) } ) ) |
| 113 | 112 | biimpar | ⊢ ( ( 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ∧ ( ◡ 𝐽 “ { 0 } ) = { ( 0g ‘ 𝑄 ) } ) → 𝐽 : ( Base ‘ 𝑄 ) –1-1→ ( Base ‘ 𝐻 ) ) |
| 114 | 7 111 113 | syl2anc | ⊢ ( 𝜑 → 𝐽 : ( Base ‘ 𝑄 ) –1-1→ ( Base ‘ 𝐻 ) ) |
| 115 | f1f1orn | ⊢ ( 𝐽 : ( Base ‘ 𝑄 ) –1-1→ ( Base ‘ 𝐻 ) → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ran 𝐽 ) | |
| 116 | 114 115 | syl | ⊢ ( 𝜑 → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ran 𝐽 ) |
| 117 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) | |
| 118 | ovex | ⊢ ( 𝐺 ~QG 𝐾 ) ∈ V | |
| 119 | 118 | ecelqsi | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
| 120 | 117 119 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
| 121 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
| 122 | 120 121 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( Base ‘ 𝑄 ) ) |
| 123 | elqsi | ⊢ ( 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) | |
| 124 | 51 123 | syl | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
| 125 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) | |
| 126 | 125 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 127 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 128 | 1 127 3 4 5 117 | ghmquskerlem1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 129 | 128 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 130 | 126 129 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 131 | 130 | 3impa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 132 | 131 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( 𝐽 ‘ 𝑟 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 133 | 122 124 132 | rexxfrd2 | ⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( Base ‘ 𝑄 ) ( 𝐽 ‘ 𝑟 ) = 𝑦 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 134 | fvelrnb | ⊢ ( 𝐽 Fn ( Base ‘ 𝑄 ) → ( 𝑦 ∈ ran 𝐽 ↔ ∃ 𝑟 ∈ ( Base ‘ 𝑄 ) ( 𝐽 ‘ 𝑟 ) = 𝑦 ) ) | |
| 135 | 105 134 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐽 ↔ ∃ 𝑟 ∈ ( Base ‘ 𝑄 ) ( 𝐽 ‘ 𝑟 ) = 𝑦 ) ) |
| 136 | fvelrnb | ⊢ ( 𝐹 Fn ( Base ‘ 𝐺 ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) | |
| 137 | 21 136 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 138 | 133 135 137 | 3bitr4rd | ⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐽 ) ) |
| 139 | 138 | eqrdv | ⊢ ( 𝜑 → ran 𝐹 = ran 𝐽 ) |
| 140 | 139 6 | eqtr3d | ⊢ ( 𝜑 → ran 𝐽 = ( Base ‘ 𝐻 ) ) |
| 141 | 140 | f1oeq3d | ⊢ ( 𝜑 → ( 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ran 𝐽 ↔ 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) ) |
| 142 | 116 141 | mpbid | ⊢ ( 𝜑 → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) |
| 143 | 86 18 | isgim | ⊢ ( 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) ↔ ( 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ∧ 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) ) |
| 144 | 7 142 143 | sylanbrc | ⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) ) |