This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmpt2d.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| fmpt2d.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | ||
| fmpt2d.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) | ||
| Assertion | fmpt2d | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt2d.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | fmpt2d.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
| 3 | fmpt2d.3 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) | |
| 4 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 6 | 5 | fnmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 8 | 2 | fneq1d | ⊢ ( 𝜑 → ( 𝐹 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) ) |
| 9 | 7 8 | mpbird | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 10 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) |
| 11 | ffnfv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐶 ) ) | |
| 12 | 9 10 11 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |