This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping H induced by a surjective group homomorphism F from the quotient group Q over F 's kernel K is a group isomorphism. In this case, one says that F factors through Q , which is also called the factor group. (Contributed by Thierry Arnoux, 22-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmqusker.1 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| ghmqusker.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | ||
| ghmqusker.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | ||
| ghmqusker.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) | ||
| ghmqusker.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | ||
| Assertion | ghmquskerlem3 | ⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusker.1 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| 2 | ghmqusker.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 3 | ghmqusker.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | |
| 4 | ghmqusker.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) | |
| 5 | ghmqusker.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) | |
| 9 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 10 | 1 | ghmker | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 12 | 3 11 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 13 | 4 | qusgrp | ⊢ ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑄 ∈ Grp ) |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → 𝑄 ∈ Grp ) |
| 15 | ghmrn | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ran 𝐹 ∈ ( SubGrp ‘ 𝐻 ) ) | |
| 16 | subgrcl | ⊢ ( ran 𝐹 ∈ ( SubGrp ‘ 𝐻 ) → 𝐻 ∈ Grp ) | |
| 17 | 2 15 16 | 3syl | ⊢ ( 𝜑 → 𝐻 ∈ Grp ) |
| 18 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 19 | 18 | imaexd | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐹 “ 𝑞 ) ∈ V ) |
| 20 | 19 | uniexd | ⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ 𝑄 ) ) → ∪ ( 𝐹 “ 𝑞 ) ∈ V ) |
| 21 | 5 | a1i | ⊢ ( 𝜑 → 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) ) |
| 22 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 23 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 24 | 23 7 | ghmf | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 25 | 2 24 | syl | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 26 | 25 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐻 ) ) |
| 27 | 26 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐻 ) ) |
| 28 | 25 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
| 29 | 28 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
| 30 | 4 | a1i | ⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) ) |
| 31 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 32 | ovexd | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V ) | |
| 33 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) | |
| 34 | 2 33 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 35 | 30 31 32 34 | qusbas | ⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
| 36 | nsgsubg | ⊢ ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 37 | eqid | ⊢ ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 ) | |
| 38 | 23 37 | eqger | ⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
| 39 | 12 36 38 | 3syl | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
| 40 | 39 | qsss | ⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 41 | 35 40 | eqsstrrd | ⊢ ( 𝜑 → ( Base ‘ 𝑄 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 42 | 41 | sselda | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
| 43 | 42 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
| 44 | 43 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 46 | 29 45 | fnfvelrnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 47 | 27 46 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐻 ) ) |
| 48 | 22 47 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ 𝑟 ) ∈ ( Base ‘ 𝐻 ) ) |
| 49 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 50 | simpr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) | |
| 51 | 1 49 3 4 5 50 | ghmquskerlem2 | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥 ∈ 𝑟 ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 52 | 48 51 | r19.29a | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽 ‘ 𝑟 ) ∈ ( Base ‘ 𝐻 ) ) |
| 53 | 20 21 52 | fmpt2d | ⊢ ( 𝜑 → 𝐽 : ( Base ‘ 𝑄 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 54 | 39 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
| 55 | 50 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) |
| 56 | 35 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
| 57 | 55 56 | eleqtrrd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
| 58 | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ 𝑟 ) | |
| 59 | qsel | ⊢ ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ∧ 𝑥 ∈ 𝑟 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) | |
| 60 | 54 57 58 59 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
| 61 | simp-5r | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) ) | |
| 62 | 61 56 | eleqtrrd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
| 63 | simplr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ 𝑠 ) | |
| 64 | qsel | ⊢ ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ∧ 𝑦 ∈ 𝑠 ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) | |
| 65 | 54 62 63 64 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) |
| 66 | 60 65 | oveq12d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) = ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 67 | 12 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 68 | 43 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
| 69 | 68 58 | sseldd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 70 | 41 | sselda | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
| 71 | 70 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
| 72 | 71 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
| 73 | 72 | ad4antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
| 74 | 73 63 | sseldd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 75 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 76 | 4 23 75 8 | qusadd | ⊢ ( ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) = [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) |
| 77 | 67 69 74 76 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ( +g ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) = [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) |
| 78 | 66 77 | eqtrd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) = [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) |
| 79 | 78 | fveq2d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) ) = ( 𝐽 ‘ [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 80 | 2 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 81 | 80 33 | syl | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐺 ∈ Grp ) |
| 82 | 23 75 81 69 74 | grpcld | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 83 | 1 80 3 4 5 82 | ghmquskerlem1 | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ [ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 84 | 23 75 9 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 85 | 80 69 74 84 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 86 | 79 83 85 | 3eqtrd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 87 | simpllr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 88 | simpr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 89 | 87 88 | oveq12d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝐽 ‘ 𝑟 ) ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 90 | 86 89 | eqtr4d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
| 91 | 2 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 92 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) ) | |
| 93 | 1 91 3 4 5 92 | ghmquskerlem2 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑠 ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 94 | 90 93 | r19.29a | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
| 95 | 51 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥 ∈ 𝑟 ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 96 | 94 95 | r19.29a | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
| 97 | 96 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ) → ( 𝐽 ‘ ( 𝑟 ( +g ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( +g ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
| 98 | 6 7 8 9 14 17 53 97 | isghmd | ⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ) |