This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A surjective group homomorphism F from G to H induces an isomorphism J from Q to H , where Q is the factor group of G by F 's kernel K . (Contributed by Thierry Arnoux, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmqusker.1 | |- .0. = ( 0g ` H ) |
|
| ghmqusker.f | |- ( ph -> F e. ( G GrpHom H ) ) |
||
| ghmqusker.k | |- K = ( `' F " { .0. } ) |
||
| ghmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
||
| ghmqusker.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
||
| ghmqusker.s | |- ( ph -> ran F = ( Base ` H ) ) |
||
| Assertion | ghmqusker | |- ( ph -> J e. ( Q GrpIso H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusker.1 | |- .0. = ( 0g ` H ) |
|
| 2 | ghmqusker.f | |- ( ph -> F e. ( G GrpHom H ) ) |
|
| 3 | ghmqusker.k | |- K = ( `' F " { .0. } ) |
|
| 4 | ghmqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
|
| 5 | ghmqusker.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
|
| 6 | ghmqusker.s | |- ( ph -> ran F = ( Base ` H ) ) |
|
| 7 | 1 2 3 4 5 | ghmquskerlem3 | |- ( ph -> J e. ( Q GrpHom H ) ) |
| 8 | ghmgrp1 | |- ( F e. ( G GrpHom H ) -> G e. Grp ) |
|
| 9 | 2 8 | syl | |- ( ph -> G e. Grp ) |
| 10 | 9 | ad4antr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> G e. Grp ) |
| 11 | 1 | ghmker | |- ( F e. ( G GrpHom H ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
| 12 | 2 11 | syl | |- ( ph -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
| 13 | 3 12 | eqeltrid | |- ( ph -> K e. ( NrmSGrp ` G ) ) |
| 14 | nsgsubg | |- ( K e. ( NrmSGrp ` G ) -> K e. ( SubGrp ` G ) ) |
|
| 15 | 13 14 | syl | |- ( ph -> K e. ( SubGrp ` G ) ) |
| 16 | 15 | ad4antr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> K e. ( SubGrp ` G ) ) |
| 17 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 18 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 19 | 17 18 | ghmf | |- ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 20 | 2 19 | syl | |- ( ph -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 21 | 20 | ffnd | |- ( ph -> F Fn ( Base ` G ) ) |
| 22 | 21 | ad3antrrr | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F Fn ( Base ` G ) ) |
| 23 | 22 | adantr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> F Fn ( Base ` G ) ) |
| 24 | 4 | a1i | |- ( ph -> Q = ( G /s ( G ~QG K ) ) ) |
| 25 | eqidd | |- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
|
| 26 | ovexd | |- ( ph -> ( G ~QG K ) e. _V ) |
|
| 27 | 24 25 26 9 | qusbas | |- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
| 28 | eqid | |- ( G ~QG K ) = ( G ~QG K ) |
|
| 29 | 17 28 | eqger | |- ( K e. ( SubGrp ` G ) -> ( G ~QG K ) Er ( Base ` G ) ) |
| 30 | 13 14 29 | 3syl | |- ( ph -> ( G ~QG K ) Er ( Base ` G ) ) |
| 31 | 30 | qsss | |- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) C_ ~P ( Base ` G ) ) |
| 32 | 27 31 | eqsstrrd | |- ( ph -> ( Base ` Q ) C_ ~P ( Base ` G ) ) |
| 33 | 32 | sselda | |- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ~P ( Base ` G ) ) |
| 34 | 33 | elpwid | |- ( ( ph /\ r e. ( Base ` Q ) ) -> r C_ ( Base ` G ) ) |
| 35 | 34 | sselda | |- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) -> x e. ( Base ` G ) ) |
| 36 | 35 | adantr | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> x e. ( Base ` G ) ) |
| 37 | 36 | adantr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> x e. ( Base ` G ) ) |
| 38 | simpr | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) = ( F ` x ) ) |
|
| 39 | 38 | eqeq1d | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( ( J ` r ) = .0. <-> ( F ` x ) = .0. ) ) |
| 40 | 39 | biimpa | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> ( F ` x ) = .0. ) |
| 41 | fniniseg | |- ( F Fn ( Base ` G ) -> ( x e. ( `' F " { .0. } ) <-> ( x e. ( Base ` G ) /\ ( F ` x ) = .0. ) ) ) |
|
| 42 | 41 | biimpar | |- ( ( F Fn ( Base ` G ) /\ ( x e. ( Base ` G ) /\ ( F ` x ) = .0. ) ) -> x e. ( `' F " { .0. } ) ) |
| 43 | 23 37 40 42 | syl12anc | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> x e. ( `' F " { .0. } ) ) |
| 44 | 43 3 | eleqtrrdi | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> x e. K ) |
| 45 | 28 | eqg0el | |- ( ( G e. Grp /\ K e. ( SubGrp ` G ) ) -> ( [ x ] ( G ~QG K ) = K <-> x e. K ) ) |
| 46 | 45 | biimpar | |- ( ( ( G e. Grp /\ K e. ( SubGrp ` G ) ) /\ x e. K ) -> [ x ] ( G ~QG K ) = K ) |
| 47 | 10 16 44 46 | syl21anc | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> [ x ] ( G ~QG K ) = K ) |
| 48 | 30 | ad4antr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> ( G ~QG K ) Er ( Base ` G ) ) |
| 49 | simpr | |- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ( Base ` Q ) ) |
|
| 50 | 27 | adantr | |- ( ( ph /\ r e. ( Base ` Q ) ) -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
| 51 | 49 50 | eleqtrrd | |- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
| 52 | 51 | ad3antrrr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> r e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
| 53 | simpllr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> x e. r ) |
|
| 54 | qsel | |- ( ( ( G ~QG K ) Er ( Base ` G ) /\ r e. ( ( Base ` G ) /. ( G ~QG K ) ) /\ x e. r ) -> r = [ x ] ( G ~QG K ) ) |
|
| 55 | 48 52 53 54 | syl3anc | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> r = [ x ] ( G ~QG K ) ) |
| 56 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 57 | 17 28 56 | eqgid | |- ( K e. ( SubGrp ` G ) -> [ ( 0g ` G ) ] ( G ~QG K ) = K ) |
| 58 | 15 57 | syl | |- ( ph -> [ ( 0g ` G ) ] ( G ~QG K ) = K ) |
| 59 | 58 | ad4antr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> [ ( 0g ` G ) ] ( G ~QG K ) = K ) |
| 60 | 47 55 59 | 3eqtr4d | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> r = [ ( 0g ` G ) ] ( G ~QG K ) ) |
| 61 | 4 56 | qus0 | |- ( K e. ( NrmSGrp ` G ) -> [ ( 0g ` G ) ] ( G ~QG K ) = ( 0g ` Q ) ) |
| 62 | 13 61 | syl | |- ( ph -> [ ( 0g ` G ) ] ( G ~QG K ) = ( 0g ` Q ) ) |
| 63 | 62 | ad3antrrr | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> [ ( 0g ` G ) ] ( G ~QG K ) = ( 0g ` Q ) ) |
| 64 | 63 | adantr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> [ ( 0g ` G ) ] ( G ~QG K ) = ( 0g ` Q ) ) |
| 65 | 60 64 | eqtrd | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> r = ( 0g ` Q ) ) |
| 66 | 63 | eqeq2d | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( r = [ ( 0g ` G ) ] ( G ~QG K ) <-> r = ( 0g ` Q ) ) ) |
| 67 | 66 | biimpar | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> r = [ ( 0g ` G ) ] ( G ~QG K ) ) |
| 68 | 67 | fveq2d | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> ( J ` r ) = ( J ` [ ( 0g ` G ) ] ( G ~QG K ) ) ) |
| 69 | 2 | adantr | |- ( ( ph /\ r e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
| 70 | 69 | ad3antrrr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> F e. ( G GrpHom H ) ) |
| 71 | 17 56 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 72 | 9 71 | syl | |- ( ph -> ( 0g ` G ) e. ( Base ` G ) ) |
| 73 | 72 | ad4antr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> ( 0g ` G ) e. ( Base ` G ) ) |
| 74 | 1 70 3 4 5 73 | ghmquskerlem1 | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> ( J ` [ ( 0g ` G ) ] ( G ~QG K ) ) = ( F ` ( 0g ` G ) ) ) |
| 75 | 56 1 | ghmid | |- ( F e. ( G GrpHom H ) -> ( F ` ( 0g ` G ) ) = .0. ) |
| 76 | 2 75 | syl | |- ( ph -> ( F ` ( 0g ` G ) ) = .0. ) |
| 77 | 76 | ad4antr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> ( F ` ( 0g ` G ) ) = .0. ) |
| 78 | 68 74 77 | 3eqtrd | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> ( J ` r ) = .0. ) |
| 79 | 65 78 | impbida | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( ( J ` r ) = .0. <-> r = ( 0g ` Q ) ) ) |
| 80 | 1 69 3 4 5 49 | ghmquskerlem2 | |- ( ( ph /\ r e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) |
| 81 | 79 80 | r19.29a | |- ( ( ph /\ r e. ( Base ` Q ) ) -> ( ( J ` r ) = .0. <-> r = ( 0g ` Q ) ) ) |
| 82 | 81 | pm5.32da | |- ( ph -> ( ( r e. ( Base ` Q ) /\ ( J ` r ) = .0. ) <-> ( r e. ( Base ` Q ) /\ r = ( 0g ` Q ) ) ) ) |
| 83 | simpr | |- ( ( ph /\ r = ( 0g ` Q ) ) -> r = ( 0g ` Q ) ) |
|
| 84 | 4 | qusgrp | |- ( K e. ( NrmSGrp ` G ) -> Q e. Grp ) |
| 85 | 13 84 | syl | |- ( ph -> Q e. Grp ) |
| 86 | eqid | |- ( Base ` Q ) = ( Base ` Q ) |
|
| 87 | eqid | |- ( 0g ` Q ) = ( 0g ` Q ) |
|
| 88 | 86 87 | grpidcl | |- ( Q e. Grp -> ( 0g ` Q ) e. ( Base ` Q ) ) |
| 89 | 85 88 | syl | |- ( ph -> ( 0g ` Q ) e. ( Base ` Q ) ) |
| 90 | 89 | adantr | |- ( ( ph /\ r = ( 0g ` Q ) ) -> ( 0g ` Q ) e. ( Base ` Q ) ) |
| 91 | 83 90 | eqeltrd | |- ( ( ph /\ r = ( 0g ` Q ) ) -> r e. ( Base ` Q ) ) |
| 92 | 91 | ex | |- ( ph -> ( r = ( 0g ` Q ) -> r e. ( Base ` Q ) ) ) |
| 93 | 92 | pm4.71rd | |- ( ph -> ( r = ( 0g ` Q ) <-> ( r e. ( Base ` Q ) /\ r = ( 0g ` Q ) ) ) ) |
| 94 | 82 93 | bitr4d | |- ( ph -> ( ( r e. ( Base ` Q ) /\ ( J ` r ) = .0. ) <-> r = ( 0g ` Q ) ) ) |
| 95 | 2 | adantr | |- ( ( ph /\ q e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
| 96 | 95 | imaexd | |- ( ( ph /\ q e. ( Base ` Q ) ) -> ( F " q ) e. _V ) |
| 97 | 96 | uniexd | |- ( ( ph /\ q e. ( Base ` Q ) ) -> U. ( F " q ) e. _V ) |
| 98 | 5 | a1i | |- ( ph -> J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) ) |
| 99 | 22 36 | fnfvelrnd | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ran F ) |
| 100 | 6 | ad3antrrr | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ran F = ( Base ` H ) ) |
| 101 | 99 100 | eleqtrd | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ( Base ` H ) ) |
| 102 | 38 101 | eqeltrd | |- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) e. ( Base ` H ) ) |
| 103 | 102 80 | r19.29a | |- ( ( ph /\ r e. ( Base ` Q ) ) -> ( J ` r ) e. ( Base ` H ) ) |
| 104 | 97 98 103 | fmpt2d | |- ( ph -> J : ( Base ` Q ) --> ( Base ` H ) ) |
| 105 | 104 | ffnd | |- ( ph -> J Fn ( Base ` Q ) ) |
| 106 | fniniseg | |- ( J Fn ( Base ` Q ) -> ( r e. ( `' J " { .0. } ) <-> ( r e. ( Base ` Q ) /\ ( J ` r ) = .0. ) ) ) |
|
| 107 | 105 106 | syl | |- ( ph -> ( r e. ( `' J " { .0. } ) <-> ( r e. ( Base ` Q ) /\ ( J ` r ) = .0. ) ) ) |
| 108 | velsn | |- ( r e. { ( 0g ` Q ) } <-> r = ( 0g ` Q ) ) |
|
| 109 | 108 | a1i | |- ( ph -> ( r e. { ( 0g ` Q ) } <-> r = ( 0g ` Q ) ) ) |
| 110 | 94 107 109 | 3bitr4d | |- ( ph -> ( r e. ( `' J " { .0. } ) <-> r e. { ( 0g ` Q ) } ) ) |
| 111 | 110 | eqrdv | |- ( ph -> ( `' J " { .0. } ) = { ( 0g ` Q ) } ) |
| 112 | 86 18 87 1 | kerf1ghm | |- ( J e. ( Q GrpHom H ) -> ( J : ( Base ` Q ) -1-1-> ( Base ` H ) <-> ( `' J " { .0. } ) = { ( 0g ` Q ) } ) ) |
| 113 | 112 | biimpar | |- ( ( J e. ( Q GrpHom H ) /\ ( `' J " { .0. } ) = { ( 0g ` Q ) } ) -> J : ( Base ` Q ) -1-1-> ( Base ` H ) ) |
| 114 | 7 111 113 | syl2anc | |- ( ph -> J : ( Base ` Q ) -1-1-> ( Base ` H ) ) |
| 115 | f1f1orn | |- ( J : ( Base ` Q ) -1-1-> ( Base ` H ) -> J : ( Base ` Q ) -1-1-onto-> ran J ) |
|
| 116 | 114 115 | syl | |- ( ph -> J : ( Base ` Q ) -1-1-onto-> ran J ) |
| 117 | simpr | |- ( ( ph /\ x e. ( Base ` G ) ) -> x e. ( Base ` G ) ) |
|
| 118 | ovex | |- ( G ~QG K ) e. _V |
|
| 119 | 118 | ecelqsi | |- ( x e. ( Base ` G ) -> [ x ] ( G ~QG K ) e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
| 120 | 117 119 | syl | |- ( ( ph /\ x e. ( Base ` G ) ) -> [ x ] ( G ~QG K ) e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
| 121 | 27 | adantr | |- ( ( ph /\ x e. ( Base ` G ) ) -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
| 122 | 120 121 | eleqtrd | |- ( ( ph /\ x e. ( Base ` G ) ) -> [ x ] ( G ~QG K ) e. ( Base ` Q ) ) |
| 123 | elqsi | |- ( r e. ( ( Base ` G ) /. ( G ~QG K ) ) -> E. x e. ( Base ` G ) r = [ x ] ( G ~QG K ) ) |
|
| 124 | 51 123 | syl | |- ( ( ph /\ r e. ( Base ` Q ) ) -> E. x e. ( Base ` G ) r = [ x ] ( G ~QG K ) ) |
| 125 | simpr | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ r = [ x ] ( G ~QG K ) ) -> r = [ x ] ( G ~QG K ) ) |
|
| 126 | 125 | fveq2d | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ r = [ x ] ( G ~QG K ) ) -> ( J ` r ) = ( J ` [ x ] ( G ~QG K ) ) ) |
| 127 | 2 | adantr | |- ( ( ph /\ x e. ( Base ` G ) ) -> F e. ( G GrpHom H ) ) |
| 128 | 1 127 3 4 5 117 | ghmquskerlem1 | |- ( ( ph /\ x e. ( Base ` G ) ) -> ( J ` [ x ] ( G ~QG K ) ) = ( F ` x ) ) |
| 129 | 128 | adantr | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ r = [ x ] ( G ~QG K ) ) -> ( J ` [ x ] ( G ~QG K ) ) = ( F ` x ) ) |
| 130 | 126 129 | eqtrd | |- ( ( ( ph /\ x e. ( Base ` G ) ) /\ r = [ x ] ( G ~QG K ) ) -> ( J ` r ) = ( F ` x ) ) |
| 131 | 130 | 3impa | |- ( ( ph /\ x e. ( Base ` G ) /\ r = [ x ] ( G ~QG K ) ) -> ( J ` r ) = ( F ` x ) ) |
| 132 | 131 | eqeq1d | |- ( ( ph /\ x e. ( Base ` G ) /\ r = [ x ] ( G ~QG K ) ) -> ( ( J ` r ) = y <-> ( F ` x ) = y ) ) |
| 133 | 122 124 132 | rexxfrd2 | |- ( ph -> ( E. r e. ( Base ` Q ) ( J ` r ) = y <-> E. x e. ( Base ` G ) ( F ` x ) = y ) ) |
| 134 | fvelrnb | |- ( J Fn ( Base ` Q ) -> ( y e. ran J <-> E. r e. ( Base ` Q ) ( J ` r ) = y ) ) |
|
| 135 | 105 134 | syl | |- ( ph -> ( y e. ran J <-> E. r e. ( Base ` Q ) ( J ` r ) = y ) ) |
| 136 | fvelrnb | |- ( F Fn ( Base ` G ) -> ( y e. ran F <-> E. x e. ( Base ` G ) ( F ` x ) = y ) ) |
|
| 137 | 21 136 | syl | |- ( ph -> ( y e. ran F <-> E. x e. ( Base ` G ) ( F ` x ) = y ) ) |
| 138 | 133 135 137 | 3bitr4rd | |- ( ph -> ( y e. ran F <-> y e. ran J ) ) |
| 139 | 138 | eqrdv | |- ( ph -> ran F = ran J ) |
| 140 | 139 6 | eqtr3d | |- ( ph -> ran J = ( Base ` H ) ) |
| 141 | 140 | f1oeq3d | |- ( ph -> ( J : ( Base ` Q ) -1-1-onto-> ran J <-> J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) ) |
| 142 | 116 141 | mpbid | |- ( ph -> J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) |
| 143 | 86 18 | isgim | |- ( J e. ( Q GrpIso H ) <-> ( J e. ( Q GrpHom H ) /\ J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) ) |
| 144 | 7 142 143 | sylanbrc | |- ( ph -> J e. ( Q GrpIso H ) ) |