This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqg0el.1 | ⊢ ∼ = ( 𝐺 ~QG 𝐻 ) | |
| Assertion | eqg0el | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( [ 𝑋 ] ∼ = 𝐻 ↔ 𝑋 ∈ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqg0el.1 | ⊢ ∼ = ( 𝐺 ~QG 𝐻 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | 2 1 | eqger | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er ( Base ‘ 𝐺 ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ∼ Er ( Base ‘ 𝐺 ) ) |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | 2 5 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 8 | 4 7 | erth | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ∼ 𝑋 ↔ [ ( 0g ‘ 𝐺 ) ] ∼ = [ 𝑋 ] ∼ ) ) |
| 9 | 2 1 5 | eqgid | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ∼ = 𝐻 ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → [ ( 0g ‘ 𝐺 ) ] ∼ = 𝐻 ) |
| 11 | 10 | eqeq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( [ ( 0g ‘ 𝐺 ) ] ∼ = [ 𝑋 ] ∼ ↔ 𝐻 = [ 𝑋 ] ∼ ) ) |
| 12 | eqcom | ⊢ ( 𝐻 = [ 𝑋 ] ∼ ↔ [ 𝑋 ] ∼ = 𝐻 ) | |
| 13 | 12 | a1i | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐻 = [ 𝑋 ] ∼ ↔ [ 𝑋 ] ∼ = 𝐻 ) ) |
| 14 | 8 11 13 | 3bitrrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( [ 𝑋 ] ∼ = 𝐻 ↔ ( 0g ‘ 𝐺 ) ∼ 𝑋 ) ) |
| 15 | errel | ⊢ ( ∼ Er ( Base ‘ 𝐺 ) → Rel ∼ ) | |
| 16 | relelec | ⊢ ( Rel ∼ → ( 𝑋 ∈ [ ( 0g ‘ 𝐺 ) ] ∼ ↔ ( 0g ‘ 𝐺 ) ∼ 𝑋 ) ) | |
| 17 | 3 15 16 | 3syl | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑋 ∈ [ ( 0g ‘ 𝐺 ) ] ∼ ↔ ( 0g ‘ 𝐺 ) ∼ 𝑋 ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑋 ∈ [ ( 0g ‘ 𝐺 ) ] ∼ ↔ ( 0g ‘ 𝐺 ) ∼ 𝑋 ) ) |
| 19 | 10 | eleq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑋 ∈ [ ( 0g ‘ 𝐺 ) ] ∼ ↔ 𝑋 ∈ 𝐻 ) ) |
| 20 | 14 18 19 | 3bitr2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) → ( [ 𝑋 ] ∼ = 𝐻 ↔ 𝑋 ∈ 𝐻 ) ) |