This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ghmqusker . (Contributed by Thierry Arnoux, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmqusker.1 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| ghmqusker.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | ||
| ghmqusker.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | ||
| ghmqusker.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) | ||
| ghmqusker.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | ||
| ghmquskerlem2.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑄 ) ) | ||
| Assertion | ghmquskerlem2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusker.1 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| 2 | ghmqusker.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 3 | ghmqusker.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | |
| 4 | ghmqusker.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) | |
| 5 | ghmqusker.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | |
| 6 | ghmquskerlem2.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑄 ) ) | |
| 7 | 4 | a1i | ⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) ) |
| 8 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 9 | ovexd | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V ) | |
| 10 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) | |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 12 | 7 8 9 11 | qusbas | ⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
| 13 | 6 12 | eleqtrrd | ⊢ ( 𝜑 → 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
| 14 | elqsg | ⊢ ( 𝑌 ∈ ( Base ‘ 𝑄 ) → ( 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) | |
| 15 | 14 | biimpa | ⊢ ( ( 𝑌 ∈ ( Base ‘ 𝑄 ) ∧ 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
| 16 | 6 13 15 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
| 17 | 1 | ghmker | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 18 | nsgsubg | ⊢ ( ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 19 | 2 17 18 | 3syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 20 | 3 19 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 21 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 22 | eqid | ⊢ ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 ) | |
| 23 | 21 22 | eqger | ⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
| 24 | 20 23 | syl | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
| 26 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) | |
| 27 | ecref | ⊢ ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) | |
| 28 | 25 26 27 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑥 ∈ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
| 29 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) | |
| 30 | 28 29 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑥 ∈ 𝑌 ) |
| 31 | 29 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ 𝑌 ) = ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 32 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 33 | 1 32 3 4 5 26 | ghmquskerlem1 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 34 | 31 33 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 35 | 30 34 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝑥 ∈ 𝑌 ∧ ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 36 | 35 | expl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝑥 ∈ 𝑌 ∧ ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 37 | 36 | reximdv2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) → ∃ 𝑥 ∈ 𝑌 ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 38 | 16 37 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) |