This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group homomorphism F is injective if and only if its kernel is the singleton { N } . (Contributed by Thierry Arnoux, 27-Oct-2017) (Proof shortened by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 13-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1ghm0to0.a | ⊢ 𝐴 = ( Base ‘ 𝑅 ) | |
| f1ghm0to0.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| f1ghm0to0.n | ⊢ 𝑁 = ( 0g ‘ 𝑅 ) | ||
| f1ghm0to0.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| Assertion | kerf1ghm | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ghm0to0.a | ⊢ 𝐴 = ( Base ‘ 𝑅 ) | |
| 2 | f1ghm0to0.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | f1ghm0to0.n | ⊢ 𝑁 = ( 0g ‘ 𝑅 ) | |
| 4 | f1ghm0to0.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 5 | simpl | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ) | |
| 6 | f1fn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐹 Fn 𝐴 ) |
| 8 | elpreima | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) ) ) |
| 10 | 9 | biimpa | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) ) |
| 11 | 10 | simpld | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → 𝑥 ∈ 𝐴 ) |
| 12 | 10 | simprd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
| 13 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 14 | 13 | elsn | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 15 | 12 14 | sylib | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 16 | 1 2 3 4 | f1ghm0to0 | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 𝑁 ) ) |
| 17 | 16 | biimpd | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) |
| 18 | 17 | 3expa | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) |
| 19 | 18 | imp | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) → 𝑥 = 𝑁 ) |
| 20 | 5 11 15 19 | syl21anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → 𝑥 = 𝑁 ) |
| 21 | 20 | ex | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) → 𝑥 = 𝑁 ) ) |
| 22 | velsn | ⊢ ( 𝑥 ∈ { 𝑁 } ↔ 𝑥 = 𝑁 ) | |
| 23 | 21 22 | imbitrrdi | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) → 𝑥 ∈ { 𝑁 } ) ) |
| 24 | 23 | ssrdv | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ◡ 𝐹 “ { 0 } ) ⊆ { 𝑁 } ) |
| 25 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑅 ∈ Grp ) | |
| 26 | 1 3 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 𝑁 ∈ 𝐴 ) |
| 27 | 25 26 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑁 ∈ 𝐴 ) |
| 28 | 3 4 | ghmid | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 ‘ 𝑁 ) = 0 ) |
| 29 | fvex | ⊢ ( 𝐹 ‘ 𝑁 ) ∈ V | |
| 30 | 29 | elsn | ⊢ ( ( 𝐹 ‘ 𝑁 ) ∈ { 0 } ↔ ( 𝐹 ‘ 𝑁 ) = 0 ) |
| 31 | 28 30 | sylibr | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 ‘ 𝑁 ) ∈ { 0 } ) |
| 32 | 1 2 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 33 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 34 | elpreima | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑁 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑁 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑁 ) ∈ { 0 } ) ) ) | |
| 35 | 32 33 34 | 3syl | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝑁 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑁 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑁 ) ∈ { 0 } ) ) ) |
| 36 | 27 31 35 | mpbir2and | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑁 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
| 37 | 36 | snssd | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → { 𝑁 } ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → { 𝑁 } ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
| 39 | 24 38 | eqssd | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) |
| 40 | 32 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 41 | simpl | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 42 | simpr2l | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 ∈ 𝐴 ) | |
| 43 | simpr2r | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑦 ∈ 𝐴 ) | |
| 44 | simpr3 | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 45 | eqid | ⊢ ( ◡ 𝐹 “ { 0 } ) = ( ◡ 𝐹 “ { 0 } ) | |
| 46 | eqid | ⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) | |
| 47 | 1 4 45 46 | ghmeqker | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ∈ ( ◡ 𝐹 “ { 0 } ) ) ) |
| 48 | 47 | biimpa | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ∈ ( ◡ 𝐹 “ { 0 } ) ) |
| 49 | 41 42 43 44 48 | syl31anc | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ∈ ( ◡ 𝐹 “ { 0 } ) ) |
| 50 | simpr1 | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) | |
| 51 | 49 50 | eleqtrd | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ∈ { 𝑁 } ) |
| 52 | ovex | ⊢ ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ∈ V | |
| 53 | 52 | elsn | ⊢ ( ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) ∈ { 𝑁 } ↔ ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) = 𝑁 ) |
| 54 | 51 53 | sylib | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) = 𝑁 ) |
| 55 | 25 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑅 ∈ Grp ) |
| 56 | 1 3 46 | grpsubeq0 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) = 𝑁 ↔ 𝑥 = 𝑦 ) ) |
| 57 | 55 42 43 56 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑥 ( -g ‘ 𝑅 ) 𝑦 ) = 𝑁 ↔ 𝑥 = 𝑦 ) ) |
| 58 | 54 57 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
| 59 | 58 | 3anassrs | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 60 | 59 | ex | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 61 | 60 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 62 | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 63 | 40 61 62 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 64 | 39 63 | impbida | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( ◡ 𝐹 “ { 0 } ) = { 𝑁 } ) ) |