This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image H of a group homomorphism F is isomorphic with the quotient group Q over F 's kernel K . Together with ghmker and ghmima , this is sometimes called the first isomorphism theorem for groups. (Contributed by Thierry Arnoux, 10-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gicqusker.1 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| gicqusker.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | ||
| gicqusker.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | ||
| gicqusker.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) | ||
| gicqusker.s | ⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) ) | ||
| Assertion | gicqusker | ⊢ ( 𝜑 → 𝑄 ≃𝑔 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gicqusker.1 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| 2 | gicqusker.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 3 | gicqusker.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | |
| 4 | gicqusker.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) | |
| 5 | gicqusker.s | ⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) ) | |
| 6 | imaeq2 | ⊢ ( 𝑝 = 𝑞 → ( 𝐹 “ 𝑝 ) = ( 𝐹 “ 𝑞 ) ) | |
| 7 | 6 | unieqd | ⊢ ( 𝑝 = 𝑞 → ∪ ( 𝐹 “ 𝑝 ) = ∪ ( 𝐹 “ 𝑞 ) ) |
| 8 | 7 | cbvmptv | ⊢ ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑝 ) ) = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
| 9 | 1 2 3 4 8 5 | ghmqusker | ⊢ ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑝 ) ) ∈ ( 𝑄 GrpIso 𝐻 ) ) |
| 10 | brgici | ⊢ ( ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑝 ) ) ∈ ( 𝑄 GrpIso 𝐻 ) → 𝑄 ≃𝑔 𝐻 ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → 𝑄 ≃𝑔 𝐻 ) |