This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion. Assuming that S is a subset of A and that z is R -minimal, then C is an acceptable function. (Contributed by Scott Fenton, 7-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frrlem11.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| frrlem11.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | ||
| frrlem11.3 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) | ||
| frrlem11.4 | ⊢ 𝐶 = ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) | ||
| frrlem12.5 | ⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) | ||
| frrlem12.6 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) | ||
| frrlem12.7 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) | ||
| frrlem13.8 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑆 ∈ V ) | ||
| frrlem13.9 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑆 ⊆ 𝐴 ) | ||
| Assertion | frrlem13 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝐶 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frrlem11.1 | ⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } | |
| 2 | frrlem11.2 | ⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) | |
| 3 | frrlem11.3 | ⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵 ) ) → ( ( 𝑥 𝑔 𝑢 ∧ 𝑥 ℎ 𝑣 ) → 𝑢 = 𝑣 ) ) | |
| 4 | frrlem11.4 | ⊢ 𝐶 = ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) | |
| 5 | frrlem12.5 | ⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) | |
| 6 | frrlem12.6 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) | |
| 7 | frrlem12.7 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) | |
| 8 | frrlem13.8 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑆 ∈ V ) | |
| 9 | frrlem13.9 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑆 ⊆ 𝐴 ) | |
| 10 | eldifi | ⊢ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) → 𝑧 ∈ 𝐴 ) | |
| 11 | 10 8 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝑆 ∈ V ) |
| 12 | 11 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝑆 ∈ V ) |
| 13 | inex1g | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∩ dom 𝐹 ) ∈ V ) | |
| 14 | snex | ⊢ { 𝑧 } ∈ V | |
| 15 | unexg | ⊢ ( ( ( 𝑆 ∩ dom 𝐹 ) ∈ V ∧ { 𝑧 } ∈ V ) → ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∈ V ) | |
| 16 | 13 14 15 | sylancl | ⊢ ( 𝑆 ∈ V → ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∈ V ) |
| 17 | 12 16 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∈ V ) |
| 18 | 1 2 3 4 | frrlem11 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
| 19 | 18 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
| 20 | inss1 | ⊢ ( 𝑆 ∩ dom 𝐹 ) ⊆ 𝑆 | |
| 21 | 10 9 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝑆 ⊆ 𝐴 ) |
| 22 | 21 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝑆 ⊆ 𝐴 ) |
| 23 | 20 22 | sstrid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( 𝑆 ∩ dom 𝐹 ) ⊆ 𝐴 ) |
| 24 | 10 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → 𝑧 ∈ 𝐴 ) |
| 25 | 24 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝑧 ∈ 𝐴 ) |
| 26 | 25 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → { 𝑧 } ⊆ 𝐴 ) |
| 27 | 23 26 | unssd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 28 | elun | ⊢ ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ↔ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 ∈ { 𝑧 } ) ) | |
| 29 | elin | ⊢ ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ↔ ( 𝑤 ∈ 𝑆 ∧ 𝑤 ∈ dom 𝐹 ) ) | |
| 30 | velsn | ⊢ ( 𝑤 ∈ { 𝑧 } ↔ 𝑤 = 𝑧 ) | |
| 31 | 29 30 | orbi12i | ⊢ ( ( 𝑤 ∈ ( 𝑆 ∩ dom 𝐹 ) ∨ 𝑤 ∈ { 𝑧 } ) ↔ ( ( 𝑤 ∈ 𝑆 ∧ 𝑤 ∈ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) ) |
| 32 | 28 31 | bitri | ⊢ ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ↔ ( ( 𝑤 ∈ 𝑆 ∧ 𝑤 ∈ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) ) |
| 33 | 10 7 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
| 34 | 33 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) |
| 35 | rsp | ⊢ ( ∀ 𝑤 ∈ 𝑆 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 → ( 𝑤 ∈ 𝑆 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( 𝑤 ∈ 𝑆 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ) ) |
| 37 | 1 2 | frrlem8 | ⊢ ( 𝑤 ∈ dom 𝐹 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) |
| 38 | 36 37 | anim12d1 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( 𝑤 ∈ 𝑆 ∧ 𝑤 ∈ dom 𝐹 ) → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ∧ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) ) ) |
| 39 | ssin | ⊢ ( ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑆 ∧ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ dom 𝐹 ) ↔ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) | |
| 40 | 38 39 | imbitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( 𝑤 ∈ 𝑆 ∧ 𝑤 ∈ dom 𝐹 ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) ) |
| 41 | 10 6 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) |
| 42 | 41 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ 𝑆 ) |
| 43 | preddif | ⊢ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ∖ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ) | |
| 44 | 43 | eqeq1i | ⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ↔ ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ∖ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ) = ∅ ) |
| 45 | ssdif0 | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ↔ ( Pred ( 𝑅 , 𝐴 , 𝑧 ) ∖ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ) = ∅ ) | |
| 46 | 44 45 | sylbb2 | ⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ) |
| 47 | predss | ⊢ Pred ( 𝑅 , dom 𝐹 , 𝑧 ) ⊆ dom 𝐹 | |
| 48 | 46 47 | sstrdi | ⊢ ( Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| 49 | 48 | adantl | ⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| 50 | 49 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ dom 𝐹 ) |
| 51 | 42 50 | ssind | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) |
| 52 | predeq3 | ⊢ ( 𝑤 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑤 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) | |
| 53 | 52 | sseq1d | ⊢ ( 𝑤 = 𝑧 → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ↔ Pred ( 𝑅 , 𝐴 , 𝑧 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) ) |
| 54 | 51 53 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( 𝑤 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) ) |
| 55 | 40 54 | jaod | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( ( 𝑤 ∈ 𝑆 ∧ 𝑤 ∈ dom 𝐹 ) ∨ 𝑤 = 𝑧 ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) ) |
| 56 | 32 55 | biimtrid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) ) |
| 57 | 56 | imp | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) ∧ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( 𝑆 ∩ dom 𝐹 ) ) |
| 58 | ssun1 | ⊢ ( 𝑆 ∩ dom 𝐹 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) | |
| 59 | 57 58 | sstrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) ∧ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) → Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
| 60 | 59 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) |
| 61 | 27 60 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ) |
| 62 | 1 2 3 4 5 6 7 | frrlem12 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 63 | 62 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) ∧ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) → ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 64 | 63 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ) → ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 65 | 64 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 66 | fneq2 | ⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( 𝐶 Fn 𝑡 ↔ 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ) | |
| 67 | sseq1 | ⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( 𝑡 ⊆ 𝐴 ↔ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ) ) | |
| 68 | sseq2 | ⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ↔ Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ) | |
| 69 | 68 | raleqbi1dv | ⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ↔ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ) |
| 70 | 67 69 | anbi12d | ⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ↔ ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ) ) |
| 71 | raleq | ⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) | |
| 72 | 66 70 71 | 3anbi123d | ⊢ ( 𝑡 = ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) → ( ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ↔ ( 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∧ ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 73 | 72 | spcegv | ⊢ ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∈ V → ( ( 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∧ ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) → ∃ 𝑡 ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 74 | 73 | imp | ⊢ ( ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∈ V ∧ ( 𝐶 Fn ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ∧ ( ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ) ∧ ∀ 𝑤 ∈ ( ( 𝑆 ∩ dom 𝐹 ) ∪ { 𝑧 } ) ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) → ∃ 𝑡 ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 75 | 17 19 61 65 74 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ∃ 𝑡 ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 76 | 1 2 3 | frrlem9 | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 77 | resfunexg | ⊢ ( ( Fun 𝐹 ∧ 𝑆 ∈ V ) → ( 𝐹 ↾ 𝑆 ) ∈ V ) | |
| 78 | 76 12 77 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( 𝐹 ↾ 𝑆 ) ∈ V ) |
| 79 | snex | ⊢ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ∈ V | |
| 80 | unexg | ⊢ ( ( ( 𝐹 ↾ 𝑆 ) ∈ V ∧ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ∈ V ) → ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ∈ V ) | |
| 81 | 78 79 80 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( ( 𝐹 ↾ 𝑆 ) ∪ { 〈 𝑧 , ( 𝑧 𝐺 ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) 〉 } ) ∈ V ) |
| 82 | 4 81 | eqeltrid | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝐶 ∈ V ) |
| 83 | fneq1 | ⊢ ( 𝑐 = 𝐶 → ( 𝑐 Fn 𝑡 ↔ 𝐶 Fn 𝑡 ) ) | |
| 84 | fveq1 | ⊢ ( 𝑐 = 𝐶 → ( 𝑐 ‘ 𝑤 ) = ( 𝐶 ‘ 𝑤 ) ) | |
| 85 | reseq1 | ⊢ ( 𝑐 = 𝐶 → ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) = ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) | |
| 86 | 85 | oveq2d | ⊢ ( 𝑐 = 𝐶 → ( 𝑤 𝐺 ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) |
| 87 | 84 86 | eqeq12d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 88 | 87 | ralbidv | ⊢ ( 𝑐 = 𝐶 → ( ∀ 𝑤 ∈ 𝑡 ( 𝑐 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ↔ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 89 | 83 88 | 3anbi13d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝑐 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ↔ ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 90 | 89 | exbidv | ⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑡 ( 𝑐 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝑐 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ↔ ∃ 𝑡 ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 91 | 1 | frrlem1 | ⊢ 𝐵 = { 𝑐 ∣ ∃ 𝑡 ( 𝑐 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝑐 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑐 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |
| 92 | 90 91 | elab2g | ⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ 𝐵 ↔ ∃ 𝑡 ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 93 | 82 92 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → ( 𝐶 ∈ 𝐵 ↔ ∃ 𝑡 ( 𝐶 Fn 𝑡 ∧ ( 𝑡 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑡 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑡 ) ∧ ∀ 𝑤 ∈ 𝑡 ( 𝐶 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝐶 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) ) |
| 94 | 75 93 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐴 ∖ dom 𝐹 ) ∧ Pred ( 𝑅 , ( 𝐴 ∖ dom 𝐹 ) , 𝑧 ) = ∅ ) ) → 𝐶 ∈ 𝐵 ) |